
THE ARITHMETICAL INVARIANTS OF QUADRATIC FORMS 

GORDON PALL 

1. Introduction. Anyone who has tried to read the developments 
by H. J. S. Smith [9]1 or H. Minkowski [ó] of the systems of invari­
ants (for a general positive integer n) associated with a genus of 
integral w-ary quadratic forms must be discouraged by their com­
plexity. Further, from the standpoint of practical computation for a 
given form, these invariants are quite tedious to obtain, requiring as a 
first step the determination of a very special "characteristic form." 

These complications are perhaps due essentially to the insistence on 
integral coefficients at all stages of the theory of integral forms. It is 
remarkable that, although Gauss began the systematic development 
of the theory of integral quadratic forms about the year 1800, it was 
not until over a hundred years later (in Hensel's work on £-adic 
numbers) that it was realized that there might be a considerable ad­
vantage in studying quadratic forms first in the field of rationals, and 
applying results thus obtained to the more difficult problems in the 
ring of integers. It turns out in fact that the complicated "simultane­
ous characters'' of Smith and Minkowski are closely related to certain 
easily computed invariants under rational, linear transformations, 
and this fact enormously simplifies their use. 

Our main purpose in this lecture will be to set forth a complete 
and easily computable system of invariants for a genus of integral 
w-ary quadratic forms. By our methods, anyone used to working with 
Legendre-Jacobi symbols should be able to obtain in less than fifteen 
minutes a complete system of invariants of a given integral form in 
(say) six variables, provided the coefficients are not unreasonably 
large. One has little more to do than "complete squares" by the 
method of elementary algebra, and then to read off the values of the 
invariants. 

In an article scheduled to appear in the Duke Mathematical Jour­
nal, B. W. Jones shows how to reduce any integral quadratic form to 
a unique canonical form modulo 2r (r large), and so embodies a com­
plete set of invariants in a form which is in some respects equivalent 
but not quite so handy as ours. 

Before describing these invariants, we shall recall some of the gen­
eral properties of a genus of integral quadratic forms. 

An address delivered at the invitation of the Program Committee before the New 
York meeting of the Society on October 28, 1944; received by the editors November 
18,1944. 

1 Numbers in brackets refer to the references cited at the end of the paper. 
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2. Properties of a genus. A quadratic form ƒ = X JTXOC — / j(tjjXjX4 I S 

called integral if its coefficients an and 2a»-y (i, i = l, • • • , n) are in­
tegers. We shall assume tha t the determinant, | ƒ | or | A | , of ƒ is 
not zero. 

The linear transformation x = Ty replaces ƒ by the form g of matrix 
T'A T. We shall single out the cases where the elements of the matrix 
T are (a) real, (b) rational, (c) rational but with denominators prime 
to a given integer k, (d) integral with | T\ prime to k, (e) integral with 
| T\ = ± 1, (f) integral with | T\ = 1. In each case we assume | T\ 5*0. 
In cases (e) and (f) we shall call T respectively unit-modular and uni-
modular. 

If ƒ is replaced by ^ 6 ^ ? , by a real transformation, the number of 
negative coefficients bi is invariant (under real transformations), will 
be denoted here by i, and called the index of ƒ. We learn in algebra 
tha t n and i comprise a complete invariant system under real trans­
formations. 

Gauss called ƒ and g equivalent if T is unimodular. All forms equiva­
lent to a given one constitute a class. Some recent writers have defined 
class by means of what we have named unit-modular transformations. 
There is no essential difference, and any statement about one kind 
of class can be immediately interpreted in terms of the other kind. 

A genus will consist of a finite number of classes, and can be defined 
in several ways. Since we shall have a later use for the result, we shall 
recall Gauss's original definition of genus for binary quadratic forms, 
or rather a slight modification of his definition. Any integral b.q.f. can 
be written as f=di(ax%+bxiX2+cx%) =di/i , where*di is a positive in­
teger, and a, b, c are coprime integers. The quantities di, D~b2 — 4cact 

and index t, are invariants of ƒ under unit-modular transformations. 
These quantities satisfy the conditions ( — 1) 'D < 0 ; £> s= 0 or 1 mod 4 ; 
i = 0, 1, or 2. Besides these, the following quantities, called generic 
characters, are invariant: 

(/i I P) for e a c ^ °dd prime p in D, 

(1) ( - 11 jfi) if a) ^ 4, or if co = 2 and p = 1, 

( - 2p | jfi) if co à 5, or if co = 3. 

Here — D = 2 % where e is odd, and p stands for ( — 11 e). (What we 
mean is that if / i is replaced in the character (fi\ p) by any number n 
represented b y / i and prime to p, the value of the Legendre symbol 
(n\p) is always the same; similarly if p=z2, n being odd and repre­
sented by jfi.) The preceding invariants are not (unless D is a square) 
independent, bu t are easily shown to satisfy the single relation 
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(2) (21 ƒ , ) • ( - 11/,)(H-i)/t . ( - i)um(fl| *) , 

where ei = | e|. This complicated relation will be given a more elegant 
form in §7. 

Gauss defined two binary forms ƒ and g as in the same genus if they 
have the same values for their invariants du D, t, and (1). This defini­
tion has the merit that the invariants are easily computable, and so 
one can tell in a jiffy whether two given forms are, or are not, in the 
same genus. Then Gauss proved, for binaries, two simple properties 
which were later extended to three, and then to n, variables, by 
Smith, Minkowski, and Siegel: 

THEOREM 2.1. Call two n-ary forms f and g equivalent modulo k,iff 
can be transformed by an integral transformation of determinant prime 
to k into a form congruent (coefficient f or coefficient) modulo k to g. Then 
ƒ and g are in the same genus if and only if they have the same index t, 
and are equivalent modulo k, for every positive integer k. 

THEOREM 2.2. Two n-ary forms f and g are in the same genus if and 
only if, for every positive integer k, each can be transformed into the other 
by a rational transformation with denominators prime to k. 

Minkowski [6, p. 71 ] in effect defined a genus by means of the prop­
erty in Theorem 2.1. He then used the obvious fact that the numbers 
of solutions oif^n mod k and g^n mod k must be the same for every 
n and k, to obtain a complete (but complicated) system of invari­
ants, which he showed would imply the equivalence mod k of ƒ and g 
for every k. Eisenstein [2 ] (for ternaries of odd determinant) and Smith 
(for w-aries) had previously carried on in the Gauss tradition, and 
defined a genus by means of directly computable invariants. Smith 
no doubt obtained these invariants by studying the number of solu­
tions of tjie congruences ƒ sw mod pr, for any prime p. He knew the 
truth of both Theorems 2.1 and 2.2, although he published complete 
proofs only for w = 3. Siegel [S] was the first to prove Theorem 2.2 
for a general n. 

Both the properties in the above theorems imply that ƒ and g have 
the same determinant d. If we assume they have the same determi­
nant d, both statements can be improved. Thus, two forms of in­
tegral matrix are in the same genus if they have the same determinant 
d, index t, n, and are equivalent modulo 8d; or again, if they have the 
same determinant dy and one can be transformed into the other by a 
rational transformation with denominators prime to 2d, 

Hel Braun [l ] considered the complete system of generic invariants 
given by n, t, a determinant d such that ( — 1) d>0, q0=

sSdz
t and a 
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matrix-residue S mod goî and showed that such a system corresponds 
to an actually existing form, if and only if there exists an integer x\ 
prime to q0 such that | S\ ^oftd mod q, and 

X exp 2irix'Sx/qQ = exp — (n - 2t) • (2g0)
w/2-d1/2. 

% mod q$ *̂ 

The latter condition was obtained by applying the reciprocity law for 
Gauss sums, and it is not surprising therefore that we can replace it 
by condition (7) of §5, which is closely related to the quadratic rec­
iprocity law. 

3. The essentials of />-adic numbers and Hilbert norm-residue 
symbols obtained by an independent method. There are at least three 
interesting points in which our treatment differs from that of Hensel 
[4, chap. 12] and Hasse [3]. First, we shall define a symbol, which, 
although essentially equal to Hubert's norm-residue symbol, is de­
fined more simply and symmetrically. Second we shall not use £-adic 
numbers as such, but shall replace them by rational congruences. 
Third, we can get all the results of Hasse (on rational quadratic 
forms) by strictly elementary methods (cf. §6). 

Let p be a given prime. Two nonzero rational numbers a and b will 
be said to be in the same p-adic class if, for each positive integer r, 
there exists a rational number x such that 

(1) ax2 se b mod p\ 

By (1) we mean that (ax2 — b)/pr is a rational number whose denomi­
nator is prime to py that is, an integer modulo p. It is easily shown 
that if p is odd there are exactly four £-adic classes, containing the 
respective numbers (called £-adic kernels) 

(2) 1, p, v, pv, 

where v denotes any given quadratic non-residue mod p ; and if p = 2, 
there are exactly eight £-adic classes, with the £-adic kernels 

(3) 1, 3, - 1, - 3, 2, 6, - 2, - 6. 

To find the £-adic class of any nonzero rational number we need only 
write it in the form s2pak, where $ is a rational number, a = 0 or 1, 
and k is an integer prime to p ; and replace k by a number of the same 
quadratic character, l o r i> i f£>2 , ± l o r ±3 if £ = 2. 

It is useful to introduce a conventional "prime" p, called the prime 
oo or ôo ; and for this to understand that the solvability of (1) for 
every r means the solvability of 
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(4) ax2 = b 

with x real. For the prime p* it is evident that there are two p-adic 
classes, one consisting of all positive, the other of all negative ra-
tionals. 

Example, 2 and — 7/2 are in the same p-adic class for £ = 2, 11; in 
different p-adic classes if p— «>, 3, 5, 7. 

If a and b are any nonzero rational numbers, we define the symbol 
(a, b)p to have the value + 1 or —1 according as the congruence 

(5) ax2 + by2 s 1 mod pr 

has or has not, for each r, rational solutions xr and yr. 
Two remarks should be made. First, our symbol (a, b)p has the 

same value as Hubert 's symbol ( ^ ) in those cases in which Hubert 's 
symbol is defined. Second, in strict analogy to the Hensel £-adic back­
ground, which we are here replacing by rational congruences, we 
might have supposed tha t it would be necessary to restrict the solu­
tion numbers xr and yr in (5) to have the power of p in their denomi­
nators bounded independently of r. I t is of interest to note in passing 
that this restriction is unnecessary, not only in the case of (5), but 
in the more general case of representation of forms by forms. 

I t follows a t once from (5) tha t 

(6) (a, b)p = (a', b')p 

if a' and b' are in the £-adic classes of a and b respectively. Hence 
(a, b)p can be evaluated by considering only a few cases, and we now 
give the final results : 

(7) (a, b)oo = — 1 if and only if a and b are negative; 

(8) (patn, pa'm')p = (— 11 p)aa'{m \ p)a\m! \ p)a if p > 2; 

(9) (2«m9 2 « V ) j = (2 | tn)«'(2 \ m')"(- i)<*-i)(»'-D/4 

if p - 2. 

Here m and m1 denote integers prime to p\ a and <xf are 0 or 1. 
Example. (2, - 5 / 2 ) p has the value - 1 if £ = 5; ( + 1 ) ( - 1 ) ( + 1 ) 

= — 1 if p = 2 ; + 1 for all other primes £. 
The following properties of the symbol (a} b)Pf valid for all primes p% 

are easily verified by use of (7)-(9), or can be proved independently: 

(10) (a, b)p = (J, a)p; 

(11) (a, b)p = 1 if a, £, or a + & is in the j^-adic class of 1; 

(12) (a, - a)p = 1, (a, a) p = (a., - l ) p ; 
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(13) (0, hb2)P = (a, bx)p(a, b2)P, (axa2i b)p = (au b)p(a2, b)p. 

For any odd prime p, (a, b)p is evidently + 1 unless p actually ap­
pears in a or 6. One easily sees tha t for given a and ô, (a, b)p is — 1 for 
only a finite even number (possibly zero) of primes p (counting in p^). 
This fact is usually written in the simple form 

(14) IE («, b), - + 1, 
V 

and will be found to be equivalent to various cases of the quadratic 
reciprocity law. 

4. The invariants of a rational quadratic form under rational trans­
formations. Minkowski [6, pp. 219-239] obtained a complete system 
of such invariants, in 1890, on the basis of his theory for integral 
forms. The system which we shall now describe is essentially that of 
Hasse (1923), the binary and ternary case having been due to Hensel. 
Hasse gave many beautiful applications, and to appreciate the fol­
lowing developments properly, one should read his work. An exposi­
tion containing a number of novel features will be given in a 
forthcoming book by the author; proofs will be found there of all 
results stated here without proof. The following remarks should be 
sufficient for the applications made in §6 to integral forms. 

Besides applying rational linear transformations T to ƒ, we are in­
terested in the effect of multiplying ƒ by a nonzero rational number. 
If *= | T\, evidently | / | is multiplied by t2. Also, | \ / | =X W | / | . This 
proves the following theorem. 

THEOREM 4.1. The squat efree integer part d of the determinant Dn of 
an n-ary form ƒ is invariant under nonsingular linear transformations 
with rational coefficients. If n is even, d is also invariant under multi­
plication by rational constants. 

To obtain further invariants under rational transformations, Hasse 
wrote ƒ in the form ]Ca<#?, a n d showed that the product of the 
n(n+l)/2 Hilbert symbols (a*, aj)p (i£j; i, j = l , • * * , n) is an in­
variant of ƒ under rational transformations. The restricted form of ƒ 
made his proof [3, pp. 209-216] unnecessarily complicated. In-g 
stead, it is easy to prove, for any form /=X)a*ix*xi» ^ a t if Di 
(i = l, • •• • , n) denotes the leading principal minor determinant of 
order i in the matrix (a*,) of ƒ, then if none of the Di vanishes, the 
quanti ty 

n - l 

(1) CP = Cp(f) = ( - 1, - Dn)pU(Pi, ~ Di+l)p 
i - 1 
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is invariant under rational transformations. Indeed this remains 
true, when properly interpreted, even if some of the Di other than 
Dn vanish, provided no two consecutive Di vanish; for then, if we 
interpret any product such as (D;~i, — 0)p(0, — Dj+i)p as though it 
were (Z>i_i, ~h)p(h, — Dj+i)p with any value h not zero, we obtain 
the correct value of cp(f). 

THEOREM 4.2. Two forms f and g are rationally equivalent if and only 
if they have the same values for their invariants 

(2) n> i} d, cp for every p. 

These invariants are not independent of one another, and it is 
easily seen that they satisfy the relations 

(3) O ^ t ^ , ( - iyd > 0, c„ = ( - l)K*-i>/«, I I cp - + 1; 

(4) if n = 1, cp = (— 1, — d)p for every p; 

(5) if n = 2, cp = 1 if p satisfies ( - d \ p) = 1. 

Conversely, Hasse obtains many applications of the existence theo­
rem that if n> t, and d are integers, d squarefree, and (cp) is a complex 
of signs satisfying (3)-(5), then there exists a form ƒ with these as­
signed values for its invariants. 

Besides (34) it should be noted that if ƒ is integral and p is an odd 
prime not dividing | / | , then cp(f) = + 1 . 

The following formulae are easily proved, and show how easily the 
invariants cp can be handled in applications. If X is any nonzero ra­
tional number, then 

((\, ( - 1)<»+1>/2W/) if n is odd, 
(6) CpCKf) = < 

J l(X, (~ l)nl2Dn)pcp(f) if n is even. 
If /=/i(*i, • • • , xr) +f2(xr+i, • - - , #n), where the variables do not 
overlap, and di = \fi\, d%~ \f<\ , then 

(7) cp(f) - ^(/i)cp(/2). ( - 1, - l)p(dlt d,)p. 

In particular, if ƒ=a1^+<^(^2, • • • , xn), and d= \f\, 

00 cp(f) - (au d)pcp{<t>). 
5. The invariants of a genus of integral quadratic forms. 

LEMMA 5.1. Let p be any finite prime. Every integral n-ary quadratic 
form f can be expressed (by means of a rational transformation which is 
integral modulo p and has determinant 1) in the form 

(1) p«4>x + p^2 -\ + pet<t>8t ex<e%<--- <e9f 
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where each 0» denotes a form with integral coefficients modulo p, the varia­
bles in different <j>i do not overlap, \<j>i\ is prime to p (i = l, • • • , s), 
and the ei are integers. Also, e% à 0, except that e\ = — 1 if p = 2 and f has 
any odd cross-product coefficient. If n% denotes the number of variables 
in <f>i, ^^jyii — n, and ^e%ni is the exponent to which p appears in \f\. 

We give the proof (cf. [7, p. 38; 6, pp. 22 seq.]), since it is part of 
the technique of computing the generic invariants. I t amounts to 
little more than judiciously completing squares. We can wr i t e / ~peifu 
where the matrix (a*/) of/ i is integral, but that oîfi/p is not. If p>2 
and any an is prime to p, we can suppose it to be an; if every an is 
divisible by p, then some 2a^- is prime to p, and we can suppose this 
true of 2ai2j we replace #2 by #i+#2, and secure an to be prime to p. 
If p = 2, and any an is odd, we take it to be an; but if every an is 
even we can suppose ai2 odd, and that a n ^ O . 

Thus the matrix of / i is of the form 

[ A B~\ r f a u aul , , 

, where A « [an J or » M I P r i m e t o P> 
B' CA La2i #22J 

the latter case occurring only if p~2. Then the transformation 
["/ - A^Bl VA 0 1 

replaces h bv the form of matrix , 

and this transformation is integral modulo p. 
In the first case, where A = (an), this process is tantamount to com­

pleting squares by the identity of elementary algebra : 

( n - 1 \ 2 - 1 n 

xi + Z) a u aU*i) + An 2 O*ii0/* — ffi*û/i)sys*» 
2 / j,k-2 

absorbing into a square the terms involving X\. In the second case, it 
is not difficult to show that one arrives a t the same form (of matrix 
C — B'A~lB) by merely completing squares twice, once for the vari­
able xu then for the variable #2; the denominators 2 which appear in 
the partial linear transformations disappear in their product. For ex­
ample, we have 

2 2 2 

ƒ = 2X\ + 2x% + 2#3 + 2#i#2 + 2X\Xz + 2#2#3 

where 

= 2{xx + x%/2 + xs/2)2 + 4/2, 

2 2 2 2 
(j) = 3x2 + 2#2#3 + 3#3 = 3(#2 + Xz/i) + (8/3) #3, 
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and can assert t ha t / i s transformed into 2y\ + 2yiy2+2y\ + (4/3)^3 by 
a linear transformation which is integral modulo 2 and has determi­
nant 1. 

By repeated applications of the preceding process, we evidently ar­
rive at a form (1), where each </>i is either a sum of binary quadratic 
forms 

2(ax2 + bxy + cy2), b odd, the determinant iac — b2 odd, 

or contains at least one term ax2, a odd. In these respective cases we 
shall term <j>i of type B or A» We can now read off from ƒ the complete 
system of its generic invariants : 

THEOREM 5.2. Let p>2. In the form (1), the quantities 

( I *<l \ 
J (i = 1. • • • i s) 

constitute a complete system of invariants off, under integral transforma­
tions of determinant prime to p. 

That is, two forms ƒ and g with the same values for their invariants 
(2) are equivalent modulo pr, r arbitrarily large. 

THEOREM 5.3. If p = 2, the following quantities are invariant, in the 
form 2ei<pi+ • • • +2*3<f>*, under integral transformations of odd determi­
nant: 

(3) $ , « ! , • • • , e8i n\, • • • , n8, the type A or B of each 0»; 

(4) the residue mod 8 of An if <t>k is followed by a rise of 8; 

(5) the residue mod 4 of An if <t>k is followed by a rise qf 4; 

/ 2 y-y 2 y 
(6) the quantity 1 1 I — J c%($) 

for every block 

yp » <t>k + 20»+i + 2V*+2 + • • • + 2M**+i-i 
or 

4>h~i/2 + <l>k + 2<t>k+i + • • • + 2 l ^k+i-u 

where <j>k, 0*+i, • • • , 0 jb+i-i are all of type A and I *z 1, and in the second 
case 0fc-i is of type B; and the block cannot be enlarged into another 
block of the same type. Here An denotes the product of the odd determi­
nants | 0 i | • • • |0fc| ; a ltrise of 8" means that either k=s, or <f>k is of 
type A and 8 | 2e*+1~e*0&+i, or </>k is of type B (so that <j>h/2 is integral) 
and 4 | 2eh+l-ek<j>k+i; a urise of 4" means that <f>h is of type B or that <f>k is 
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of type A and 4 | 2«*+1-e*<£*+i. In (6), A and v are defined by \yp\ =2"A, 
where A is odd; and clearly ?=]Cw*+i (* °dd> 1^*2*/ —1) mod 2. Two 
forms with the same invariants listed here are equivalent mod 2r, r arbi­
trarily large. 

THEOREM 5.4. Two integral n-ary forms with the same index and de­
terminant are in the same genus if and only if they have the same values 
for the invariants listed in the preceding two theorems for the prime 2 
and for each odd prime in their determinant. 

THEOREM 5.5. Let n, t, d be given integers, Ogt^w, ( — l)ld>0. For 
each prime p in d, assign a form-residue pei<f>i+ • • • +pe*<t>3, where 
^ewi is the exponent of p in d, and assign values to the invariants listed 
in Theorems 5.2 and 5.3, subject to the restriction that \ </>i\ | #2| • • * | <£«| 
has the same quadratic character as d/peinl+' * •+«•»•. Then there exists 
an integral form with the invariants so assigned, if and only if 

(7) n «,(/)- + i. 
p 

This should be compared with Hel Braun's result mentioned in §2. 
As an example of the computation of the invariants of a genus, con­

sider the form / = 5^+4^+4^2+4^+2^o^i~4^o^2+4^o^3+4^i^3 
= 5(*o + xi/S - 2#2/5 + 2^3/5)2+(19^ + 16^ + 16x3+4^ix2+16xiX3 
+8*i*«)/5« 5 ^ + 0 / 5 , where <̂  = 19(^i+2^2/19+8^3/19)2+60^/19, 
where^ = 4x3+2x3x2+5^ = 5(^2+^3/5)2+(19/5)^3. The determinant 
is therefore 5(1/5)-(19)(60/19)2(5)(19/5) = 144. Hence the only 
primes that need be considered are 2 and 3, and since the fractional 
coefficients above happen to be integral modulo 2 and 3, we can read off 
without further work the forms Syî + (l9/S)yî+(60/19)yi+(12/S)yl 
or what is essentially equivalent, 

5zo + 7z\ + 4(5z2 + 7zl) mod l\ 
and 

2z\ + 2z\ + 3(2zl + 2zl) mod 3'. 

The invariants (2) relating to the prime 3 are therefore s = 2, £i = 0, 
C2=: l, Wl = tt2:=2, (41 3) « 1, (413) = 1. The invariants (3)-(6) relating 
to the prime 2 are s — 2, £i = 0, e2 = 2, Wi = «2

s=2, both <j>\ and $2 of 
type A, the residue mod 8 of |<£i| |<£2| is 1, the residue mod 4 of \<t>x\ 
is 3, c2(<£i) = ( —5, — 7)2= + 1 , c2(02) = + l - The form ƒ is thus seen to 
be in the same genus as #o+3a^+4:x| + 12#3. It may be remarked that 
ƒ occurred, along with many more complicated forms, in an investiga­
tion of all systems of generalized quaternions permitting unrestricted 
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factorization, and that there are exactly 39 such systems in which the 
norm-form (a quaternary quadratic form) is positive definite and in 
a genus of one class. 

6. Some remarks on the methods of proof. Certain quantitative 
results concerning genera of quadratic forms, such as the weight for­
mulae of Smith, Minkowski, and Siegel, have never been proved by 
strictly elementary methods. It may however be conjectured that any 
qualitative properties can be so proved. For example, the author has 
proved all the results of this article by elementary means, without 
using (for example) Dirichlet's theorem on the existence of primes in 
an arithmetical progression. This theorem seems to have evaded all 
efforts to find an elementary proof. Many writers have used Dirich-
let's theorem in work on quadratic forms, when they might instead 
have used the following theorem of Gauss, on the existence of a genus 
of binary quadratic forms : 

THEOREM 6.1. If d, D, t, and the characters of §2 (1) are assigned, 
subject to the necessary conditions (•— 1) 1 JD<0, D^O or 1 mod 4, 
0 g t ^ 2 , and §2 (2), then there exists an integral binary quadratic form 
f with the assigned values for its invariants. 

Now if a is any number represented by /i , it will be found by use 
of (7)-(9) of §3 that 

(a, D)m - ( - l)l'/«f (a, D)2 - (2 | ƒ , ) • ( - 11 / i ) ^ 1 » 2 , 

(a, D)p = (fi | p) if p > 2 and p divides D to an odd power. 

The existence condition §2 (2) therefore takes the simpler form (cf. 
§5 (7)) 

(2) I I («. D), = 1. 
P 

An analysis of Gauss's existence theorem will be found to yield the 
following theorem. 

THEOREM 6.2. Let d be a nonzero rational number, and let jp be as­
signed equal to + 1 or — 1 for every prime p, including the prime <©. 
However, let jp be — 1 for only a finite even number of primes p, and let 
jp be +1 whenever d is in the p-adic class of 1. Then there exists a non­
zero rational number h such that 

(3) (h, d)p = j v for every p. 

In many problems, it will be found that either the construction of 
a binary quadratic form of a suitably determined genus, or the choice 
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of a number represented by such a form, or a direct use of Theorem 
6.2, will serve the same end as the choice of a prime by means of 
Dirichlet's theorem. 

We shall illustrate this by giving a proof, noteworthy for its sim­
plicity, of Legendre's theorem that every positive integer not of the 
form 4:h(8n+7) is a sum of three squares. 

Let a denote a positive squarefree integer not of the form Sn+7. 
It will suffice to prove that a is represented by a positive, properly 
primitive form of determinant 1, since every such form is equivalent 
to*î+*5+*î(cf. [S, p. 121]). 

I. Case a ^ 3 mod 8. We obtain by Gauss's theorem a positive, 
primitive form yp = CiX2+Rxy+Biy2 of discriminant i?2 —4BiCi= —a, 
with characters such that 

(4) ( * | # ) « ( - 2 | # ) if p\a. 

This is consistent with the condition of possibility §2 (2), since 

IL<*\p)-IL(-2\p)-i1 
p\a p\a 

the number of prime factors in a of the form 8&+5 or 7 being even. 
We can take C\ prime to 2a, and then by a translation x—>x+hy 
secure R=a mod 2a, and hence (comparing discriminants) J3i = 0 
mod a. Set C — 2&9B — 2B\, In view of (4) we can solve 

(5) - C s fi (mod a) 

for an integer t. We set 5 = 0, and write b=*(C+t2)/a} c=*(B+s2)/a, 
r = (st—R)/a. Then ax2+by2+cz2+2ryz+2szx+2txy has determinant 
1 and solves our problem. 

II. Case a = 1 or 2 mod 4. We can choose a positive primitive form 
\l/ = Cx2+2Rxy+By2 of discriminant -4a==4JR2~45C, with char­
acters such that 

,^ ( * | * ) - ( - l | # ) i f * U # > 2 ; ( - l | * ) - l i f a - l m o d 4 , 

(2 110 = 1 if a s 2 mod 8, ( - 2 | *) - - 1 if a « 6 mod 8. 

This is consistent with §2 (2), since the number of prime factors 4fe + 3 
in a is correctly adjusted. As before, we can secure i? = 0, 5 = 0 mod a, 
C being prime to 2a. We have (5), and so on, exactly as in case I. 
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