
LINEAR TOPOLOGICAL SPACES 

D. H. HYERS 

1. Introduction. In general analysis it is customary to study linear 
spaces for which there is defined a "norm," which takes the place of 
the absolute value of ordinary analysis in defining distance, limit 
point, continuity, and so on. Linear metric spaces more general than 
the normed spaces have also been studied by Fréchet, Banach, and 
several others. In line with the trend toward general topology, it 
seems natural to generalize still more by introducing linear topological 
spaces, that is, linear spaces which are at the same time topological 
spaces, in which the fundamental "linear*' operations of addition and 
scalar multiplication are continuous. We shall always assume that 
the topology is subject to the axioms for a IVspace.1 

The topology of TVspaces may be introduced in various ways; by 
postulating a system of open sets or of neighborhoods with certain 
properties, and so on. We shall find it convenient to give a set of 
postulates for the topology of the linear space L in which "neighbor­
hood" is the fundamental undefined notion. Since L is a topological 
group, it has a uniform topology and hence it is sufficient to consider 
neighborhoods of the origin. Moreover, the "uniform structure" im­
plies that L is a completely regular Hausdorff space.2 

The following notations will be used. The set of elements x having 
the property P will be denoted by {x; P\. If S and T are subsets of 
L, a is a fixed real number, and x a fixed point of L, x+S denotes the 
set {x+y\ yES}; S+T denotes the set {y+z; yÇ^S, zE.T}; aS 
stands for the set {ay; y(E.S}. The notations VJ and Pi are used for 
union and intersection, respectively. The following definition of a 
linear topological space is equivalent to the one given above.8 

DEFINITION 1.1. A linear space L will be called a linear topological 
space (abbreviated l.t.s.) if and only if there is a system V of subsets 

An address delivered before the April meeting of the Society in Berkeley on April 
29, 1944, by invitation of the Program Committee; received by the editors July 17, 
1944. 

1 The definition given here seems to be due to Kolmogoroff [l ], 1934. However, 
a linear space with a more general topology than that of a TVspace was defined by 
Fréchet [2, 3] in 1926 under the name "topological affine space." The postulates for 
a Ti-space are given in Alexandroff and Hopf [l, p. 59], The bracketed numbers 
refer to the bibliography. 

2 A. Weil [ l ,p . 13]. 
3 For the proof see Hyers [4]. 
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UoîL called neighborhoods of the origin subject to the following postu­
lates.4 

(i) The intersection ft { U; UCfö) of all the members of V is the 
one element set consisting of the origin 0. 

(ii) Given U&V, V&V, there exists WE.V such that WQUCW. 
(iii) If UGV there exists V£V such that V+ VQ U. 
(iv) Given UÇzl) there exists V€~V such that aVQ U, for all real 

a satisfying — 1 ^a ^ 1. 
(v) For every xÇzL and Ut-V, there exists a real number a such 

that xÇ£aU. 
Linear topological spaces may be regarded on the one hand as very 

special topological groups, which are abelian and have real "oper­
ators, " or on the other hand as a generalization of Fréchet spaces, 
Banach spaces, and so on. 

We now consider some examples of l.t.s. 
EXAMPLE 1. The space of all real functions x(t) of a real variable 

t on a fixed interval {the interval may be finite or infinite). The neighbor­
hoods Uoi the origin are taken to be the sets Z7(<r, 5) = {x; \x(t)\ <8, 
*£<r}, where <r ranges over all finite sets of real numbers on the in­
terval, and ô ranges over all positive numbers. 

EXAMPLE 2a. Any linear normed space E with its usual "strong" 
topology. Put £7(5)= {x; \\x\\ <5}, where ô>0. 

EXAMPLE 2b.8 A linear normed space E with its weak topology. Cor­
responding to each finite set a of linear continuous functional ƒ(x) on 
E, and each S>0, define Z7(<r, S)~{x; \f(x)\ <Ô, ƒ€>} . A linear 
normed space E with its weak topology, considered as a l.t.s., will 
be denoted by 6. 

EXAMPLE 3. The space I112 of sequences x = (xi, #2, • • • ) such that 
\x\ = ( 2 ^ £ i W 1 / 2 ) 2 < °°. The neighborhoods U are defined to be the 
sets £7(5) = {x; \x\ <5} , where 8>0. 

The space 6 of Example 2b is of considerable importance in some 
recent developments of Banach space theory. In Example 1 the topol­
ogy is simply that of "point-wise" convergence. This example illus­
trates the utility of the concept of a l.t.s. in situations where point-
wise convergence is desired. The norm or "strong" topologies on the 
other hand (Example 2a) apply to function spaces in which the con­
vergence of elements means the uniform convergence of functions, or 
convergence in the mean, and so on. 

Example 1 may be generalized by considering the topological prod-
4 Except for (i), these postulates are identical to those given by von Neumann [ l ] . 
6 For further examples of a similar nature related to Hubert space see von 

Neumann [l, 2]. 
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uct of a family of l.t.s. Let A be any abstract set of arbitrary cardinal 
number, and let there be assigned to each aE-4, a Lts. La. The space 
I J i o of functions x(a)t with x(a)ÇzLa for each a£-4, will be called 
the linear topological product of the family {La; a£A } of l.t.s. when 
addition and scalar multiplication are defined in the usual manner, 
and a typical neighborhood U of the origin in Hi<* *s defined as 

U = {x(a); x(a%) G Uav i = 1, • • • , n}, 

where #i, • • • , an is any finite set of indices and Ua is any neighbor­
hood of the origin in the space La. It is easily shown that the linear 
topological product of a family of l.t.s. is itself a l.t.s. According to 
this definition, Example 1 may be thought of as the space of real 
numbers raised to the power of the continuum. The linear topological 
product of a finite number of normed spaces is itself a normed space, 
but this is not true for an infinite family of normed spaces.6 

2. The properties of boundedness and convexity; normability and 
metrizability. One of the first questions to come up in studying l.t.s. is 
to determine conditions under which the space under consideration 
is capable of being normed or metrized, and hence subsumed under 
more traditional systems. 

We shall call two l.t.s. isomorphic if they are isomorphic as abstract 
linear spaces and if in addition the isomorphism is bicontinuous. A 
necessary and sufficient condition for a l.t.s. to be normable, that is, 
isomorphic to a normed space, was given by Kolmogoroff [l] in 
terms of two geometrical properties which will now be defined. The 
term "convex set" will be used in its usual sense: S is convex if x, 
yÇzS, 0 < a < l imply ax+(l—a)yÇ:S. A subset 5 of a l.t.s. L will be 
said to be bounded if for any neighborhood U of the origin there is a 
real number a such that SQaU. This definition was given by von 
Neumann [l ]. It can be shown7 to be equivalent to an earlier definition 
due to Banach. Another equivalent definition of boundedness was 
given by Michal and Paxson [l] . 

THEOREM 1 (Kolmogoroff [l]). A necessary and sufficient condition 
for a l.t.s. to be normable is that it contain an open set which is both 
convex and bounded. 

The central idea of the proof is the Minkowski functional, which is 
used to define the norm: 

0) IIHI = inf {«; x 6 all}, 
6 See for example Bourgin [l, p. 639]. 
7 Hyers [3]. 
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where U is a bounded, open, symmetric, convex neighborhood of the 
origin. The triangular property of the norm is a consequence of the 
convexity of the fundamental neighborhood U. The property that 
||#|| =0 implies x—6 follows from the fact that since U is bounded, 
the neighborhoods U'~(\/ri)U, w = l, 2, 3, • • • , form a complete 
neighborhood system of the origin. 

It has been pointed out8 that the next theorem can be easily de­
duced from a theorem of G. Birkhoff [l] on the metrization of 
topological groups. 

THEOREM 2. A l.t.s. L is metrizable as a space of type F (not neces­
sarily complete) if and only if there exists a countable complete neighbor­
hood system of the origin in L. 

The following definitions are suggested by the results of Theorem 1. 
DEFINITION 2.1. A l.t.s. L is called locally convex9 if there exists a 

complete neighborhood system of the origin, every neighborhood of 
which is convex. 

DEFINITION 2.2. A l.t.s. L is called locally bounded if it contains a 
non-void bounded open set (Hyers [4]). 

To return for a moment to the examples given in §1, we see that 
Examples 1, 2a and 2b are locally convex. The space I112 of Example 3 
is locally bounded but not locally convex (Tychonoff [l]). Examples 1 
and 2b are, in general, spaces which do not have countable complete 
neighborhood systems of the origin and hence are not metrizable. 
This is easily demonstrated for Example 1. It was proved by von 
Neumann [2] for weak Hilbert space 3C by constructing a set 5C5C 
which had the origin as a limit point, and yet had the property that 
no sequence of the elements of 5 was convergent to the origin. Thus 
in non-metrizable l.t.s. the ordinary concept of sequential con­
vergence may not be sufficient to give us all the limit points of the 
space. The space £ of Example 2b is normable if and only if it is 
finite-dimensional (Wehausen [l]). 

The property of local convexity plays an important role in many 
analytical theories, especially in the theories of linear functionals, 
integrals, and functional equations. Fortunately, most of the more 
important instances of l.t.s. do have the property of local convexity. 
It is easily seen that the linear topological product of an arbitrary 
family of locally convex spaces is itself locally convex.10 

The property of local boundedness11 puts a rather severe restriction 
8 Hyers [3], Wehausen [ l ] . 
9 The term "convex" is used by von Neumann [l] in place of "locally convex/ 
10 This was pointed out by Bourgin [l ]. 
11 Defined by Hyers [4], 
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on the l.t.s., as the following theorems show. It was mentioned in con­
nection with Theorem 1 that the property of local boundedness im­
plies that there exists a countable complete neighborhood system of 
the origin. Thus from Theorem 2 we have: 

THEOREM 3. Every locally hounded l.t.s. is metrizable. 

Again, by carrying through the same type of argument used in 
proving Theorem 1, one can prove12 the following theorem (the func­
tional \x\ is again defined by formula (1), but without requiring the 
convexity of U). 

THEOREM 4. If L is a locally bounded l.t.s. there exists a non-negative 
real valued functional x on L with the following properties: 

(i) I a; | = 0 implies that #=0 ; 
(ii) Iax\ = |a\ -\x\ for every x in L and every real a; 
(iii) there exists a real number j8^1 such that \x+y\ SP(\x\ + \y\ ) 

for all x and y in L; 
(iv) the sets S(ô) = {x; xÇzL, \x\ Ko}, where ô>0,form a complete 

neighborhood system of the origin. 
Conversely, if L is a linear space and there exists a non-negative real 

valued functional \x\ defined on L and having the properties (i), (ii), 
(iii), then L is a locally bounded l.t.s., when the topology is defined in 
accordance with (iv). 

The multiplier property (iii) is due to Bourgin [l] . The properties 
given by Hyers [4] were (i), (ii), (iv) and in place of (iii) an appar­
ently weaker continuity property, that |,#+;y|--»0 whenever |#|—>0 
and \y\ —>0. However, on the assumption of this continuity property 
and properties (i) and (ii) it is easily shown that (iii) holds.13 For if 
\x\ ^S , \y\ ^S imply that |#+;y| < 1 , then choose any xi and y\ 
such that either Xi or yx is not the zero element. Putting 
* = 8-#i/( |*i |+|:yi |) and y = h-y\/(\x\\ +\yt\ ) gives Isi+yil 
<j8(|#i| + | ^ i | ) , where ]8 = I/o. On the other hand, if \xi\ = | ^ i | =0, 
the inequality (iii) is obviously satisfied. 

DEFINITION 2.3. The functional \x\ appearing in Theorem 4 will 
be called a quasi-norm, and j8 is called a multiplier of the quasi-norm. 

One is tempted to look for the least multiplier for a given locally 
bounded space. However, Bourgin [l ] has shown by an example that 
there may be no least multiplier. By Theorem 1 it is possible to take 
j8 = l if and only if the space is locally convex. 

In normed spaces the triangular inequality implies that the norm 

12 For the proof see Hyers [3] and Bourgin [ l ] . 
18 A different proof was given by Bourgin. 
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is continuous at every point of the space. It is easily shown by an 
example that the properties (i), (ii), (iii), (iv) do not imply continuity 
everywhere. However, if the set U is bounded and open, the quasi-
norm obtained by formula (1) is everywhere upper semi-continuous 
(Hyers [4]). The complete answer to this continuity question was 
recently given by Bourgin [ l] who proved the following theorem. 

THEOREM* 5. In any locally bounded Lt.s. L it is possible to define a 
quasi-norm with the properties (i), (ii), (iii), (iv) of Theorem 4, and 
with the additional property: (v) \x\ is continuous in x at each point 
ofL. 

Bourgin's proof, of course, involves a suitable selection of the fun­
damental neighborhood U occurring in the definition of the quasi-
norm (see formula (1)). This neighborhood was chosen to be a sphere 
{x; p(x, 6)<a}, where p(x, y) is a certain metric for the space (see 
Theorem 3). A particular case of a locally bounded Lt.s. with is not 
normable is the space lm (Example 3). Here the quasi-norm can be 
defined as \x\ — (2£i|**|1/2)2> a n d in this case the number 2 is a 
multiplier. Further examples are given by M. M. Day [l] . 

The following theorem shows that the results of requiring local 
compactness are the same for a l.t.s. as for a linear normed space. 
The .term compact will be used in the "old fashioned" sense, that is, 
a set S is compact if every infinite subset of S has a limit point in S. 

THEOREM 6. A necessary and sufficient condition for a Lt.s. L to be 
isomorphic to a finite-dimensional Euclidean space is that L be locally 
compact, that is, that L contain an open set whose closure is compact. 

Theorem 6 may be proved by first showing that local compactness 
implies local boundedness, and hence the existence of a quasi-norm. 
The existence of a finite basis is then established by the method of 
F. Riesz [l] , who proved the theorem for the space C of continuous 
functions.14 

This result suggests the possibility of extending the Riesz theory of 
completely continuous linear functional equations to transformations 
of l.t.s. However, so far it has been found possible to do this only for 
locally bounded spaces (Hyers [4]). 

3. Fixed point theorems and functional equations. The well known 
fixed point theorem of Brouwer for continuous transformations of an 
«-dimensional topological simplex into itself has been generalized to 
compact subsets of (possibly) infinitely-dimensional spaces by several 

14 Theorem 6 may also be deduced from Theorem 43 of Pontrjagin [ l , p. 170]. 
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authors,15 beginning with Birkhoff and Kellogg [l] . The numerous 
applications of such fixed point theorems to the proof of existence 
theorems for both ordinary and partial differential equations as well 
as to other functional equations are too well known to require exten­
sive reiteration here. The Brouwer fixed point theorem was general­
ized to the case of bicompact convex subsets of a locally convex l.t.s. 
by Tychonoff [l] , who also applied his results to obtain an existence 
theorem for infinite systems of differential equations. TychonofFs 
theorem was also used by Paxson [l, 3] in the study of differential 
equations for functions whose values are in a l.t.s. 

As beautiful as the concepts and methods are in this general ap­
proach to the solution of functional equations, it does have certain 
disadvantages. The method is "non-effective" in the sense that no 
method is given for constructing a set of approximations to the fixed 
point. Moreover, the method leads only to the existence of a fixed 
point, and tells us nothing about its uniqueness. 

Another and older method for proving existence theorems for func­
tional equations is the famous method of successive approximations 
of Picard. This method has the advantage of being "effective," and 
hence capable of being applied to obtain approximate solutions. It 
also provides a uniqueness proof. The "heavy" restriction made here 
is that the transformation involved satisfies a Lipschitz condition. 
An application of Picard's "method to the proof of a fixed-point 
theorem for transformations of a subset of a complete metric space 
was given by Hildebrandt and Graves [l].16 The author's Theorem 7 
below17 is a generalization of the result of Hildebrandt and Graves 
to transformations operating on l.t.s. In order to formulate a suitable 
analog of the Lipschitz condition in a l.t.s. we need the following defi­
nition. 

DEFINITION 3.1. By a Lipschitz system for a l.t.s. L we shall under­
stand a family of sets K(x), with the following properties: 

(1) To each x in L there corresponds a convex set K(x), 
(2) xEK(x) and 0GK(x); if x?*0 and a>l, then axQK(x). 
(3) K(ax) =aK(x) for a^O. 
(4) yGK(x) implies K(y)CK(x). 
(5) Each K(x) is bounded. 

15 For example, Schauder [ l ] . Further references are given by Graves [ l ] . An 
application of a fixed point theorem to an existence theorem arising in a hydro-
dynamical problem was worked out by Weyl [l ] . 

16 For a discussion see Graves [l ] . 
17 Hyers [l, 2]. 
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In the special case of a linear normed space £, the sets K{x) 
= {y; Û ll £g||#||} form a Lipschitz system. A sequence xnÇzL will be 
called fundamental if, corresponding to each neighborhood U of the 
origin, there is a positive integer n0 such that xm—xnÇzU for m>n0 

and n>n<>. A subset 5 of L will be called sequentially complete if every 
fundamental sequence xnÇLS converges to a point of S. The closure 
of S, that is, the set consisting of S and its limit points, is denoted 
by 3. 

THEOREM 7. Let z =f(y) be a continuous transformation of Y into 
part of itself, where Y is a sequentially complete subset of a linear topo-< 
logical space L. Let {K(y)\ be any Lipschitz system with respect to 
which the f unction f (y) satisfies the Lipschitz condition 

f(y)-f(z)e»K(y-z) 

for all pairs y, z £ F, where pis a positive constant less than one. Then 
the transformation z =f(y) of Y into part of itself has a unique fixed 
point. 

PROOF. For any chosen y 0 £ F, define yn recurrently by yn+i—fiy»), 
w = 0, 1, 2, • • • , so that 3>n£ F for all n. Using properties (3) and (4) 
of Lipschitz systems and an induction we obtain 

y*+\ - ynG vnK(yi - yo), n = 1, 2, • • • . 

Hence we have 

ym+p — ym = ym+p — ym+v-i + • • • + ym+i — ym 

G ixm+p-lK{yi - yo) + • • • + nmK{yx - yo) 

G (nm+»~l + • • • + V.m)K(yx - yo), 

where the last step is justified since by (1), K(yi—y0) is a convex set. 
By (5) the set K(yx—y0) is bounded, so that there is a S>0 corre­
sponding to each neighborhood U of the origin 0 such that 0</3<8 
implies f3K(yi—y0)CU. Now 0 </x < 1 so that]>jun converges, and for 
sufficiently large m and any p we have ym+p—ymÇz U, whence yn is a 
fundamental sequence. The existence of a fixed point now follows im­
mediately, while the uniqueness is readily proved by using property 
(2) together with the inequality 0</*<l . 

THEOREM 8. In any locally convex linear topological space there al­
ways exist complete neighborhood systems V: (Z7, V, W, • • • ) of the 
origin with the properties: 

(i) if U(E.V, then Uis convex; 
(ii) if UÇzV then aUÇzV,for each real a. 
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For any such neighborhood system U put K(x) = f] { U; UCLV, xÇi U]. 
Then the sets K(x) form a Lipschitz system for the space L and we have 

K(x)~n{V; uev,xev}. 
This theorem gives us a useful way of finding Lipschitz systems in 

any particular locally convex space. For instance, in weakly topolo-
gized Hubert space 5C the theorem tells us that the sets K(x) of all z 
for which | (z, y) \ <\ (x, y) \, as y runs over 3C, form a Lipschitz system. 

Theorem 7 in conjunction with Theorem 8 may be used to prove 
existence theorems for differential or integral equations (Hyers [l, 
2]). By interpreting the space L in different ways a variety of exist­
ence theorems can be proved. For instance, on taking L to be the 
space (s) of all real sequences # = (#i, x*, • • • ), topologized by com­
ponent-wise convergence, we can obtain an existence theorem for an 
infinite system of ordinary differential equations. Again if L is taken 
to be the weakly topologized Hubert space 3C, one may establish an 
existence theorem for "weak" differential equations for functions 
whose values lie in Hubert space. 

4. Pseudo-norms. The notion of a pseudo-norm, introduced by 
J. von Neumann [l] for the case where the l.t.s. is locally convex, is 
both useful and suggestive in theories of linear transformations, lin­
ear functionals, differentials, and so on. It springs from the same idea 
already used in proving KolmogorofTs normability theorem, and in 
connection with locally bounded spaces, namely, the Minkowski 
functional. It differs from a norm (or the quasi-norm introduced in §2) 
in that the vanishing of the pseudo-norm of an element x does not 
imply that x = 0. The following treatment is based upon the author's 
generalization18 of von Neumann's pseudo-norm, so that it may be 
applied to any l.t.s. 

DEFINITION 4.1. An arbitrary set D with elements a, b, c, • • • to­
gether with a binary relation > is called a directed system1* if the fol­
lowing postulates are satisfied : 

(i) either a>b or a>6 for every pair a, b in D; 
(ii) if a>b and b>c then a>c\ 
(iii) given a£zD and 6£Z> there exists c£Z> such that c>a and 

c>b. 
Properties (i) and (ii) state that D is partially ordered, and (iii) is 
the "composition" property of Moore and Smith. 

DEFINITION 4.2. A linear space L will be said to be pseudo-normed 
18 Hyers [5], See also LaSalle [2]. 
19 Moore and Smith [ l ] ; G. Birkhoff [2]; Tukey [l] . In our notation a>b in­

cludes the statement a=&. 
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with respect to a directed system D if there exists a real-valued func­
tional \x\d defined for all xEL and dED which satisfies the following 
postulates. 

(1) |*| dàO; |*|<f = 0 for all dED implies * = 0. 
(2) (a*|<j = | a | • |*| d for all real a and every xEL. 
(3) Given e ED there exists dED such that \x+y\ , S |*| d+\y\ d 

for all * and y in L. 
(4) |*| de |*| e whenever d>£, and for all * in L. 
REMARK. The property (3) in Definition 4.2 is due to LaSalle [2]. 

A weaker property was used in the author's original definition. 
As a simple example of a pseudo-norm, consider the space (s) of 

all real sequences * = (*i, *2, • • • ) and take D to be the ordered set of 
positive integers. Then the functional |*| d = max{ \xt\ ; l^i^d} is 
a pseudo-norm for (s) with respect to the set of positive integers. 

Having defined a pseudo-norm for a space, the topology, obtained 
by defining * to be a limit point of a set *S if, given 5>0 and dED, 
there exists a point y9*x such that |*—y\ d<S, is called the topology 
generated by the pseudo-norm. In the example just given the pseudo-
norm generates a topology equivalent to the usual metric topology 
for (s). 

THEOREM 9. Every pseudo-normed linear space L is a l.t.s. in which 
the pseudo-norm generates the topology of L. Conversely y given any l.t.s. 
L, there exists a directed system D with respect to which L may be pseudo-
normed in such a way that the pseudo-norm generates the topology of Z,.20 

COROLLARY. The directed system D for a l.t.s. may be identified with 
a certain complete neighborhood system {U} of the origin, in which 
Ui> U2 means UiC. U*. 

The directed system D for a l.t.s. L will be called a directed system 
associated with L. 

Theorem 9 affords an alternative definition of a l.t.s. In some cases 
it seems simpler to define a pseudo-norm directly instead of defining 
an equivalent neighborhood topology. 

A pseudo-norm is called triangular if it satisfies the postulate: 
(3a) |*+3>| d^\x\ d+\y\ d for all *, y EL and dED; that is, if 

d = e in property (3) of Definition 4.2. 
The "pseudo-metric" of von Neumann [l ] is a triangular pseudo-

norm for which D is a suitably chosen complete neighborhood system 
of 6. It is possible to define a triangular pseudo-norm for a l.t.s. L if 
and only if L is locally convex.21 A good many properties of l.t.s. and 

20 Hyers [5]; LaSalle [2]. 
21 von Neumann [l ]. 
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their subsets can be stated conveniently in terms of the pseudo-norm. 
Thus, it is easily shown on the basis of Theorem 9 that a subset S 
of a l.t.s. L is bounded if and only if, given d £ A there exists fi>0 
such that \x\ <*<M for all # £ S . 

The notion of pseudo-norm has been generalized still more by J. P. 
LaSalle [1,3] to apply to linear spaces in which the "scalars" are ele­
ments of a normed ring instead of real numbers, and also to topologi­
cal spaces which need not be linear spaces. 

5. Linear transformation and functionals. In this section we shall 
consider additive transformations T(x) on a l.t.s. L\ to a l.t.s. L%. The 
following theorem was proved by Wehausen [l ] for the case in which 
Li and L% are both locally convex. However, the proof remains un­
altered for the present more general statement. 

THEOREM 10. Let L\ and L% be two l.t.s. and let Di and D2 be associ­
ated directed systems for L\ and L*, respectively. An additive transforma­
tion T on L\ to L% is continuous if and only if to each e in D% there corre­
sponds a d in Dx and a real number p^0 such that \ T(x)\ e=*l*\ *\dt for 
all x in L\. 

COROLLARY. A linear continuous transformation on L\ to Li takes 
bounded sets into bounded sets. 

In the study of linear operators on L\ to La, one of the natural 
questions which arises is that of finding a suitable topology for the 
set *13 of all continuous linear transformations T on Li to L2 which 
will make 13 a linear topological space. A satisfactory topology was 
given by LaSalle [2] in terms of a pseudo-norm. The focus of atten­
tion is the set 43i of all bounded sets B of L% which contain the origin, 
rather than a neighborhood system of the origin in L\. ©1 is a di­
rected system if we define B>B' to mean BC.B'. Consider the set D 
of all pairs e = (d, B), where d£I?2, JB£43i, and D% is a directed system 
associated with L2. Then E is also a directed system, if we define 
e>e' to mean that d>df and B>B'. 

THEOREM 11. For each TQB and each * £ £ , put | r | «=sup 
{I T(x) I dï a;£5}. Then \ T\ e is a pseudo-norm for the linear space 13, 
and E is an associated directed system. In case L% is locally convex, then 
J T\ e is a triangular pseudo-norm.22 

In particular, Theorem 11 provides a topology for the space L* of 
all linear functionals on a l.t.s. L. An equivalent topology in this spe­
cial case was used by Bourgin [l ]. 

» LaSalle [2, Theorems 5, 6], 
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We now turn to the special case of functionals on L. The following 
existence theorems, due to Wehausen [l] and LaSalle [2] respec­
tively, may be proved on the basis of the Hahn-Banach theorem 
(Banach [l, p. 27, Theorem l]). These two theorems once again em­
phasize the importance of convexity properties in connection with 
linear functionals. 

THEOREM 12. If L is a locally convex l.t.s. and D is an associated 
directed system,, then f or any #oE£ and any dÇ,D there exists a linear 
continuous functional f(x) defined on L with the property that f(xo) 

It is easily shown by example (for example, the sequence space llf2) 
that this condition of local convexity, while sufficient, is not necessary 
for the existence of non-null linear continuous functionals. This re­
mark adds interest to LaSalle's result: 

THEOREM 13. A necessary and sufficient condition that there exist a 
non-null continuous linear functional on a l.t.s. L is that there exist a 
convex open set which is properly contained in L. 

The question of the existence of linear continuous functionals in 
function spaces of the type Lp and lp, where 0<p<l, has been stud­
ied by M. M. Day [l ]. In particular it was shown that every continu­
ous linear functional defined on the space Lp of real functions f(x) 
on the interval (0, 1) is identically zero when 0<p<l. 

In the light of Theorems 12 and 13 the desirability of requiring local 
convexity in order to establish a satisfactory theory of linear func­
tionals on a l.t.s. becomes apparent. In the case of a locally convex 
l.t.s., a good many generalizations of theorems on linear functionals 
which are well known for Banach spaces can be carried through. In 
particular, theorems of the Helly type (Banach [l, pp. 55-57]) on 
the extension of functionals, which are important for their applica­
tions to the problem of moments and the solution of infinite systems 
of linear equations, have been generalized by Wehausen [l] and 
Bourgin [l] . 

The relationship between a locally convex l.t.s. L and the space L* 
of linear functionals on L has been studied from a new viewpoint by 
G. W. Mackey [l, 2]. He starts with an abstract linear space X, 
singles out a certain subset of the set of all linear (additive and homo­
geneous) functionals on X, and considers the problem of what topolo­
gies in X will make the distinguished set of functionals the continuous 
functionals. In the case of normed spaces, there is a theorem of Fich-
tenholz [l ] to the effect that two norms in the same linear space give 
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the same topology if and only if the same linear functionate are con­
tinuous with respect to both norms. Such is not the case, however, 
in the case of locally convex l.t.s., as shown by the example of a 
Banach space with its weak and strong topologies. This leads to the 
concepts of relatively weak and relatively strong l.t.s., and to several 
theorems involving these notions. (In the example just referred to, 
the norm topology h is relatively strong, and the weak topology h 
obtained from the set of all linear continuous functionate is relatively 
weak. Any other locally convex topology for the same space and lead­
ing to the same set of continuous linear functionate will be stronger 
than h and weaker than t\.) In particular it is shown that a locally 
convex l.t.s. of the second category is relatively strong. This theorem 
generalizes Wehausen's result [l] that an infinitely-dimensional 
Banach space with its weak topology is of the first category. 

6. Differentials. In functional analysis a number of definitions of a 
differential have been used.28 Perhaps the simplest is the "weak" or 
Gateaux differential df(x+aSx)/da\ «-o which is simply the "varia­
tion" used in the calculus of variations. However, the Gateaux differ­
ential does not have many of the usual properties associated with the 
total differential for functions of two or more real variables, and we 
shall be interested in the generalization of the total differential. At 
this point it might be well to list the properties which a differentiable 
function should have. Denoting the differential of ƒ(#) with increment 
Sx by df(x\ ôx) we shall require that (I) if a function is differentiable 
at a point it is continuous at this point; (II) the composite function 
rule holds, that is, if g(x) =ƒ(<£(#)) and d<j> and df exist then dg exists 
s,nddg(x] ôx) =df(y;dy), where y =<l>(x),dy — d<l>(x; Sx); (III) the dif­
ferential is linear and continuous in the increment; (IV) df(x; Sx) is 
a first order approximation to the difference f(x+Sx)— ƒ(x) when Sx 
is "close" to 0. 

Property (IV) is purposely left vague. The various definitions 
which will be discussed differ principally in the exact interpretation 
of this property. 

The standard definition of a differential of a function on Ex to E2, 
where £1 and E2 are linear normed spaces, is due to Fréchet [l] . A 
function on £1 to E% is Fréchet differentiable at the point x with 
the differential df(x; Sx) if df(x; Sx) is a linear continuous function of 
Sx on Ei to £ 2 such that limh^9\\f(x+h)-f(x)-df(x; h)\\/\\h\\=0. 
It is well known that the Fréchet differential has the four properties 
listed above. The definition shows the sense in which it satisfies (IV). 

28 For example, see Fréchet [1,2]. For a discussion see Graves [ l ] . 
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The differential calculus has been extended to include functions 
whose arguments and values lie in l.t.s. and also in topological groups 
by A. D. Michal and his students. The first step in this direction was 
made by Michal and Paxson [l, 2] in 1936. However, their definition 
did not prove entirely satisfactory, since the domain and range of 
the functon had to lie in the same space, and the rule (II) for the 
differentiation of composite functions was not demonstrated. Since 
then a number of different definitions have been proposed having the 
properties (I), (II), (III), (IV). We consider first Michal's if-differ-
ential.24 

DEFINITION 6.1. Let Lu L2 be l.t.s., and let f(x) be defined on a 
neighborhood N of a point ffo££i to L2. The function f(x) will be 
said to be M-differentiable at x*=Xo, and df(x$\ Sx) will be called an 
M-differential of f(x) at x = x0 with increment 8x if and only if 

(1) df(xo; ôx) is a linear continuous function on L\ to L2\ 
(2) there exists a function €(#0, #i, x2) with arguments in L\ and 

values in L2 such that 
(a) €(#oi 0, x)—d for all x£Li; 
(b) e(x0, Xi, \x2) =X€(#o, Xi, x2) ; for all X>0, for all Xi in some neigh­

borhood of 0£Li and for all X2ÇLLI\ 
(3) there exists a neighborhood U of 0£Li such that f(xo+8x) 

—f(%o)—df(xQ; ôx)~e(xot ôx, Sx) for all SxÇzU. 
The ikf-differential can be shown to have the properties I, II, III, 

and the Definition 6.1 shows the sense in which it satisfies IV. Every 
Jkf-differential is a Gateaux differential, so that the function df(xo; öx) 
is unique, for a given Xo and a given ƒ(#). When L\ and L2 are norm-
able spaces, every Frêchet differential is also an M-differential> but the 
converse statement is not true, as is shown by the following example. 

Let L\ be the linear normed space of all sequences x = (#1, x2i • • • ) 
such that only a finite number of the Xi's are different from zero, 
where ||#|| =sup{ \xi\ ; 0<i< 00 }. Let L2 be the linear normed space 
of all bounded sequences, with the norm defined in the same way. 
Define the function f(x)~(fi(x), f2(x), • • • ) on L\ to L2 by means 
of the formula fr(x) = (fW+r»'2*?)-1, r = 1, 2, 3, • • • . It can be shown 
that ƒ(x) is ikf-differentiable at the origin with df(0; ôx)=0, by defin­
ing e(0, y, z) = — rlf2yrzr/(l +ry2

r) and verifying that the conditions (1), 
(2), (3) of Definition 6.1 are satisfied. 

Now if we assume that f(x) is Frêchet differentiable, then there is a 
5>0 such that ||€(0, y, y)\\ g||y||/4 for | |y| |<5. Choose n so large that 
nlf2> 8rl, and choose y so that ^ = 0 for rj*n, and yn = n~lf2. Clearly 

u Michal [l, 2]. A number of other definitions of differentials have been given 
by the same author. See Michal [l-5]. 
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| |y| |<8. However, ||€(0, y, y)I|/||y|I —1/2. Hence f(x) is not Fréchet 
differentiable at the origin. This example shows that the if-differ-
ential satisfies the condition (IV) in an essentially weaker sense than 
does the Fréchet differential. 

Since Fréchet's original definition leans so heavily on the concept 
of a norm, it is natural to try to phrase a definition in terms of pseudo-
norms (Hyers [6]). 

DEFINITION 6.2. Let Li and L2 be l.t.s., and let Du D2 be associated 
directed systems. The function f(x) on an open set GQLi to L2 will 
be said to be F-differentiable at the point x of G, and df(x] öx) will 
denote its jF-differential if 

(a) df(x; h) is linear and continuous in h on L\ to L2; 
(b) for every e£Z>2 there corresponds ^ G A such that, given rj>0, 

there exists ô>0 with \f(x+h)— ƒ(#)— df(x\ h)\e£ri\h\d whenever 
| * | d < « . 

Note that d depends only on e, while 5 depends on e, d and 17. It 
can be shown that every F-differentiable function is also M-differ­
entiable. The .F-differential has the properties I-IV. In addition, 
when Li and L2 are normable, the /^-differential reduces to the Fréchet 
differential. It follows that the M-differential is more general than 
the ^-differential. 

The notion of a differential for functions whose arguments and val­
ues are in certain abelian topological groups was also introduced by 
Michal [3, 4]. The definition of the differential was of the same gen­
eral character as Definition 6.1, except that X was, of course, restricted 
to be an integer, and a stronger uniformity condition was imposed 
on the €-function. This uniformity property was strong enough to 
make the definition reduce to that of Fréchet when the topological 
abelian groups were taken to be linear normed spaces and when the 
homogeneity property of the e-function was assumed to hold for all 
real scalars. However, for l.t.s. this modified Af-differential is less 
general than the F-differential. Higher order differentials and their 
properties were investigated by the same author.26 

Later LaSalle (1) introduced differentials for transformations of a 
still more general type of space—a vector space in which the scalar 
multipliers were replaced by elements of a valued ring. His definition 
makes use of a suitably generalized pseudo-norm. Differentials for 
functions on noncommutative topological groups have been studied 
byK. Millsaps [l] . 

E. J. Pinney [l] has studied the calculus of variations for func­
tional on a l.t.s., making use of the w-differential. 

26 Michal [5]. 
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Although a good many definitions of differentials have been given 
and many of their more elementary properties have been studied, 
much remains to be done in the development of the differential cal­
culus for transformations of one l.t.s. into another. In particular it 
would be interesting to obtain a generalization of the implicit func­
tion theorems proved by Hildebrandt and Graves [l ] for the case of 
linear normed spaces. These theorems have many applications in 
functional analysis and it is desirable to extend their range of appli­
cation still farther. 

7. Convergence and completeness. We have seen how the topology 
of a l.t.s. could be generated by means of neighborhoods or by means 
of pseudo-norms. Another equivalent way is to use a suitably gen­
eralized notion of convergence. In non-metric topologies it is clearly 
not sufficient to consider merely the convergence of a sequence in the 
ordinary sense, since, by von Neumann's example already referred to, 
a point p may be a limit point of a set and yet no sequence of elements 
of the set may converge to the point. However, by using some ideas 
of Moore and Smith [l] on the convergence of integrals, Garrett 
Birkhoff [2] succeeded in generalizing the notion of convergence so 
that the convergence topology is equivalent to the neighborhood to­
pology, even in very general spaces.26 Given an abstract directed sys­
tem D (Definition 4.1) and a topological space T, a directed set27 xa is 
defined to be a function on D to T. A directed set xa is said to converge 
to the limit point x if, for every neighborhood Vx of #, there exists 
ceoG-D such that a>a0 implies that xaÇzV«. Thus the generalization 
consists in replacing the ordered set of positive integers coming into 
the definition of a sequence by directed systems D. 

In terms of this concept of convergence Birkhoff defined "com­
pleteness" of a l.t.s. as follows. First, a directed set xa will be called 
fundamental if, for every neighborhood U of the origin, there exists ao 
such that a>ao, j3>a0 imply that xa—xpÇ:U. A l.t.s. L will be said 
to be complete if every fundamental directed set converges to some 
# £ L . Completeness is an extensionally obtainable property,28 al­
though most of the "natural" instances of l.t.s. are not complete. For 
example, weak Hubert space is not complete, in Birkhoffs sense. 

Several other types of completeness have been defined for l.t.s., all 
of which coincide in metric spaces. The most obvious definition is that 
of "sequential completeness" already used in connection with the 

28 For a discussion see Tukey [l ]. 
27 The term "directed functionn might have been better. 
28 Birkhoff [2], 
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fixed point theorem of a previous section. This is the weakest type of 
completeness. 

J. von Neumann [l] has defined "topological completeness" by 
generalizing another criterion for completeness in metric spaces. A 
subset S of a l.t.s. is called totally bounded if for every neighborhood 
U of the origin there is a finite set xi, #2, • • • , xn of points of L such 
that the family of sets Xi+U,i—1, • • • , n, covers 5. Then L is said 
to be topologically complete if every totally bounded set is compact. 
It can be shown29 that every topologically complete l.t.s. is also se­
quentially complete. In particular weak Hubert space 3C is topologi­
cally and hence sequentially complete. 

Still other definitions of completeness have been given by Smulian 
[l] and Taylor [l, 2]. Smulian calls a l.t.s. quasi-complete if every 
totally bounded closed set is complete in Birkhoff s sense, and Taylor 
calls a l.t.s. boundedly complete if every bounded fundamental directed 
set is convergent, that is, if every bounded closed set is complete. 

If we denote by C the class of complete l.t.s., by B the class of those 
which are boundedly complete, by Q those which are quasi-complete, 
by T the topologically complete and by 5 the sequentially complete 
l.t.s., then we have the following inclusion relations: 

CCBCQCTCS. 
An important theorem on metric spaces states that every complete 

metric space is of the second category. However, this is not true80 for 
all l.t.s. belonging to the classes 5, 7\ Q or B. 

The notions of convergence of directed sets and the various notions 
of completeness and compactness arising therefrom have been applied 
to the study of Banach spaces by a large and still growing number of 
authors, including Alaoglu, Bourgin, Day, Dunford, Goldstine, Mil-
man, Pettis, Smulian, Taylor and several others. The ideas centering 
around the notion of weak (sequential) convergence as developed by 
Banach [l ] are generalized by the use of the convergence of directed 
sets instead of sequences. This often makes possible the elimination 
of the hypothesis of separability which usually occurs in Banach's 
results. To quote only one example, a well known theorem81 states 
that if a Banach space E is separable and has a weakly compact unit 
sphere then E is reflexive. An equivalent statement of this result may 
be obtained82 by replacing the weak compactness condition by the 
condition that £ be topologically complete. Goldstine [l ] generalized 
this result by the use of convergence of directed sets, and obtained a 

29 von Neumann [l] . 
30 Wehausen [ l]; Mackey [2]. 
81 Banach [l, p. 189]. 
® Taylor [2, §6]. 
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necessary and sufficient condition for reflexivity. Goldstine's result 
may be stated in either of the two forms : 

A Banach space E is reflexive if and only if 
(a) £ is boundedly complete,83 

(b) £ is quasi-complete.84 

Several other conditions for reflexivity have been given by Milman, 
Day, Bourgin and others in terms of various types of weak compact­
ness of the unit sphere. However, for lack of space we are unable to 
pursue this interesting topic further. 

8. Conclusion. There are several topics which we must leave with 
but the briefest mention. The subject of integration of functions 
whose values are in l.t.s. has been considered by a number of authors. 
In particular, integrals of the Lebesgue type have been defined by 
G. Birkhoff [2], R. S. Phillips [l] , and the present author.86 The work 
has been carried the farthest by Phillips, who showed that by properly 
choosing the neighborhood topology for the special case of a Banach 
space, his integral can be made to include the integrals of Birkhoff, 
Dunford, Gelfand, and Pettis, depending on the "strength" of the to­
pology used. This is an example of how the concept of l.t.s. may be 
used to unify various theories which appear quite diverse from the 
standpoint of Banach space theory. 

The theory of almost periodic functions has been studied by 
S. Bochner and J. von Neumann [l] in a very general setting, in 
which the arguments of the functions lie in groups, and the values 
in a l.t.s. 

Another interesting topic is the relation between l.t.s. and abelian 
topological groups. The question of characterizing the l.t.s. among all 
abelian topological groups has been answered by E. W. Paxson [4] 
and R. C. James [l] . The question of characterizing the subgroups 
if a l.t.s. has not yet been satisfactorily solved in general. Partial 
answers have been given by James [2] and Hyers [5]. 

In conclusion we mention another unsolved problem, namely, un­
der what conditions does a linear transformation of one l.t.s. into 
another have an inverse? The general type of existence proof used for 
metric spaces seems unavailable here, since non-metric l.t.s. are usu­
ally of the first category, even when they satisfy completeness condi­
tions. Apparently little has been done on this problem even for special 
types of transformations such as T(x)~x+G(x) where G{x) is com­
pletely continuous. 

83 Taylor [l, 2]. £, as usual, denotes the Banach space with its weak topology. 
84§mulian [ l] , 
86 Hyers [l]\ 
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