
ON UNIFORM CONVERGENCE OF TRIGONOMETRIC SERIES 

OTTO SZÂSZ 

1. Introduction. The following theorems have been proved previ­
ously.1 

THEOREM I. If the f unction <f>(t) is throughout continuous, periodic of 
period 2TT, <f>(t) =<£(-*) =<£(2ir+0> 

(1.1) <t>(t) ~ — + 22 an cos nt, 
2 i 

and if 

(1.2) nan > - K, 

for some constant K, and all n, then the series (1.1) is uniformly conver­
gent (on the real axis). 

THEOREM II. If f(t) is everywhere continuous, periodic of period 2ir' 
f(t)=-f(-o, 

00 

(1.3) ƒ(/) ~ 2 > * sin w*, 
l 

and if 

(1.4) nbn> - K, n - 1, 2, 3, • • • , 

then the series (1.3) is uniformly convergent. 

THEOREM III (CHAUNDY AND JOLUFFE). The Fourier series (1.3) 
is uniformly convergent, if 

(1.5) bn ^ in+i > 0, and if nbn ~> 0. 

Note that here no explicit assumption is made on f(t). 

THEOREM IV. If <j>(t) is continuous at / = 0, and if 
Xn 

(1.6) lim lim sup ]T) (\av \ — av) =* 0, 
X i l »-»oo n 

then the series (1.1) is uniformly convergent at J = 0. (That is, sn(tn)—*s 
whenever tn—>0.) 

Presented to the Society, April 29, 1944; received by the editors April 18, 1944. 
1 Cf. [2] and the references given there; numbers in brackets refer to the literature 

cited at the end of this paper. 
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THEOREM V. !ƒƒ(/) is continuous a/ 7 = 0, and if 
Xn 

(1.7) lim limsup £ (| fc| - h) - 0, 

then^îvby — oin), and the series (1.3) is uniformly convergent at / = 0. 

Some more general results are given in the present paper. In par­
ticular : 

THEOREM 1. Under the assumptions of Theorem IV the series (1.1) 
converges uniformly at each point of continuity of <j>(t). 

THEOREM 2. Under the assumptions of Theorem V the series (1.3) con­
verges uniformly at each point of continuity of ƒ(/). 

Clearly Theorems 1 and 2 include Theorems I and II respectively. 
Either of the following two theorems includes Theorem III. 

THEOREM 3. Suppose that 
2n 

(1.8) 22 I *> - -ftr+i | = Ofa-1) as n-+ <*>, 
n 

awd /Aa/ 
00 

(1.9) (1 - r ) 2 > J n ' w - > 0 as rT 1; 
l 

then the trigonometric series 22^» s*n nl ^s uniformly convergent. 

Note that the assumptions refer solely to the coefficients bn. 

THEOREM 4. Suppose, for some constants p g£ 0, q à 0, 

(1.10) «i„ + ^ = ^ ^ 0, 

that 

(1.11) Bn+i ^ (1 + n-~lq)Bn, for all large ny 

and that (1.9) holds. Then nbn—>0 and the trigonometric series^bn sin nt 
is uniformly convergent. 

We also give (in §§S and 6) analogous theorems for cosine series; 
here the partial sums ^Jlav=$n play a similar role as the sequence 
{nbn} for the sine series. However convergence of the series^av does 
not carry as far as existence of the limit lim nbn. It is for this reason 
that no such theorems have been established hitherto for cosine se­
ries. For details see §§5,6 and 7. 
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2. Proof of Theorems 1 and 2. We have proved [2] that under the 
assumptions of Theorem IV 

Xn 

(2.1) lim lim sup 23 I av | = 0. 

If <f>(t) is continuous at to, then the Fourier series 

*(*o + ») + *(*o ~ 0) 
2 

*(/o + 0) - <K*o - 0) 

23 #n cos w/o cos nd, 

23 aw sin w/o sin nO 

satisfy the assumptions of Theorems IV and V respectively, hence are 
uniformly convergent at 0 = 0. This proves Theorem 1. The proof of 
Theorem 2 follows on quite similar lines, since it has been proved [2] 
that 

Xn 

(2.2) lim lfan sup 23 | iv | = 0. 
X j l ft-*» w 

It is clear from our proof that the assumptions of our theorems can be 
replaced by the sole assumptions (2.1) and (2.2) respectively. 

We remark that in Theorems IV and V the assumptions (1.6) and 
(1.7) cannot be replaced by 

2n 

23 I (h | = 0(1) and 23 an converges, 
n 

In n 

231 M =0(1) and 2 * - o(n), 
n 1 

respectively. We give an example, suggested by a construction due 
toFejér [ l] . 

Let Pn(z)-I£è*/(n-v)-J£i**/(v+l)f then |P»(s)| <6 for 
|*| ^ 1 . Let Mn = 2n2, Kn = 2w(n+1), n = l, 2, 3, • • • , and consider the 
polynomial series 23 rw~22MwPJCn(*e*/n). This series is clearly uniformly 
convergent for 1*1 ^ 1, the degree of the nth. term is 2Kn+/jn — 1 <jun+i, 
hence writing out the polynomials successively we get a power series, 
convergent for | z\ < 1:23î°£nSn = F(z), and F(eu) is the Fourier power 
series of a continuous function. The structure of Pn easily yields 
23nW[£v| =0(1). It can be proved, as in Fejér's example, that the se­
ries 2lcne

int converges for each t, uniformly in € ^ ^ 2 T T —€, €>0; but 
neither component converges uniformly at / = 0. The same is true for 
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the series ̂ an cos nt, ^an sin nt, where an =* R(cn) ; ̂ an converges, so 
that]£?ra„ = 0(w). Again, using Fejér's device, and replacing eiln by 
eitnf where the sequence {/w} is everywhere dense in (0, 27r), we get a 
continuous function with a Fourier series and its conjugate nonuni-
formly convergent everywhere, while \cn\ is the same as before. 

3. Proof of Theorem 3. It follows from (1.8) that lim bn exists, and 
now from (1.9) that lim &» = 0. Furthermore 

2* K—1 2 * + 1 1 

El »> - fc«l s E E K - M - E -o(i) - o(i), 
1 w-0 2n -6 

hence 
oo 

(3.1) E | k - » H - i | < » . 

Moreover 

(3.2) 

oo oo n'2*"*** 

EI»r-»H-l| ^ I S |* ,- i ,+l | 
n <c-»0 n»2 K 

hence 
00 

(3.3) nbn - » E (fc- ~ fc+d = 0(1). 
n 

It was proved by Littlewood that boundedness of a sequence and 
Abel summability imply (C, 1) summability; if we apply this to the 
sequence {nbn} it follows from (1.9) and (3.3) that 

(3.4) 2 > » , « o(n). 
l 

Next, from Abel's formula 

(3.5) E »F sin rf - E (J ' ~ »H-i)r,(0 + bmTm(t) - hT^t), 
n n 

where 
cos */2 - cos (n + 1/2)/ 

rn( /) s= • > 

2 sin t/2 

hence in any interval € ̂  tS 2TT — e 
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]£ bv sin vt < €~%EI bv - i,+i| + 2é-Hr(| bn\ +\bm\). 

Thus the series 2 ô w sin w/ is uniformly convergent in e£t£2ir-- €, 
€>0. Let 

00 

X on sin nt = ƒ(*) ; 
l 

we shall prove next that ƒ(/)—>0 as /1 0. We write 

ƒ(') - ( È + £ V sin ri = Ui(t) + 17,(0, 
\ 1 n + l / 

say, where w= [e-"1/-1]. Now, employing (3.2), (3.3) and (3.5) 

| U%(t) \<tnic(i,\bp- i,+i| + | bn+1\) 
\ n+l / 

(3.6) > n + l 

- t-Winr1) = 60(1). 

As to Ui(t), we have 

* sin vt fiz* sin nt 
JJx = 2^ vbv = 2L, v»&* + vn — > 

1 V l W 

where 

Vn = ]C "&"» An = A 
1 w 

sin nt sin w/ sin (n + l)t 

n+l 

We have 

An = I (A cos nx)dx « i£ I sn(l — 2;)d#, 
•/ o •/ o 

z = etx, 

hence 

and 

An < 
•J o 

z\dx< t2
} 

(3.7) 
l̂ iWl < / , Zkl + »r1|«»| 

i 

i 

as U 0 , by (3.4). 
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Now (3.6) and (3.7) yield 

limsup | f(t) | g c; 

t being arbitrary, we get f(t)-~»0 as /~»0. In view of (3.3) uniform con­
vergence now follows from Theorem II. 

We remark that under the assumptions of Theorem 3 the sequence 
{nbn} need not have a limit. This is seen from the example 

nbn = 1 for n = 2", v = 0, 1, 2, • • • , bn = 0 otherwise. 

Moreover in this case ôn è 0 and ]£&n is convergent. 
On the other hand for the example £ " ( " - 1 ) " sin (2n — l)t/n log nf 

nbn—»0, 2J&„ converges, yet the series is divergent for /=7r/2. Of 
course (1.8) is not satisfied, bu t£^ n | bp\ =0(l / log n). 

4. Proof of Theorem 4. We shall employ the following lemma. 

LEMMA 1. Suppose that Bn è 0, that for some q è 0 

(4.1) J3n+1 g (1 + g/»)**, n - 1, 2, 3, • • • , 

and that the sequence {3„} is Abel summable to B\ then Bn—>B. 

This is Lemma 5 of my paper [2]. Note that the inequalities jBn^0 
and (4.1) need only be satisfied for all large nf n^n0l say. For the se­
quence Bn —Bnv « « I , 2, • • • , n0, B£ =£,», n>n0, satisfies the as­
sumptions of the lemma, hence lim Bn == lim B£ exists. 

Now for nbn+p=Bni from (1.9) 

(4.2) ( i _ r ) £ £ n r « _ » £ a s f t l ; 

from (1.10) and (1.11) 

(4.3) 0 ^ Bn+x S (1 + q/n)Bn, for all large n. 

Lemma 1 now yields 

(4.4) Bn->p, that is wiw->0. 

From (4.3) 
(4.5) (Bn+1 - Bn) g n^qBny for » è #0, say. 

WriteZn n(^+i~5,) - £ ' + £ " . where £ ' is the sum of the positive 
terms, and ] £ " the rest. From (4.4) and (4.5), £ ) ' « 0(1) î furthermore 

iWi-s» = Z' + Z" = Z ' - IZ" l . 
hence | £ " | - B . - S ^ + E ' - O U ) . It now follows that 
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2n 

EliWi-iM-E' + IE'l-oa); 
n 

this and (4.4) yield (1.8). Our theorem now follows from Theorem 3. 
If we replace (1.9) by the assumption (A) lim #&n=*p, then the trig­

onometric series 

X) (fin — pw""1) sin nt = 52 Pn s*n n* 

satisfies the assumptions of Theorem 4, hence it is uniformly conver­
gent, and we get w&w-»p, and 

(4.6) X) n̂ sin nt —> 7rp/2 as U 0. 

Combined with Theorem 3 of our paper [2] we get the theorem. 

THEOREM 5. If (4.2) holds then a necessary and sufficient condition 
that (4.6) holds is nbn—>p. 

For bn positive and decreasing, p^O, the result is due to Chaundy 
and Jolliffje, for p 5*0 to Hardy. For references see [2]. 

5. The cosine series. We shall next prove the theorem: 

THEOREM 6. Suppose that 
2n 

(5.1) EK-OM-il-OOr-1), 
n 

and that£an is Abel summable, then^an cos nt is uniformly convergent. 

Using Abel's formula 

(5.2) Yé av COS Vt = ]£ (<** ~ ÖF+I)Y>(*) + «WYmW - 0n7n-i(*), 
n w 

where 
sin (II + 1/2)* 

7 * ( ' ) = S 2sin(*/2) ' 

As in §3 it follows from (5.1) that lim an exists, and now Abel sum-
mability of Y,an implies that a„—»0. Furthermore 

00 00 

(5.3) 2 I an - <*n+l 1 < « , Z) | «r - <M-11 "» OCfT1), ^0* « 0(1). 
1 n 

Hence, by a theorem of Littlewood, ^an converges. 
Now (5.2) yields uniform convergence of ^an cos nt in e£/;£ir, 

€>0. Let 
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oo 

23 0» cos nt « #(*)> 0 < t ^ ir. 
l 

We write 

1 1 » + l 

say, where w= [e"-1/""1]. Now from (5.2) 
00 

y2(f) = 23 (a„ - a„+i)7,(/) - 0*+iYnW, 
n+l 

hence 

,e ,x I F*W I < ^ * ( | 0n+l| + E l O, - «H-ll) 
(5.4) \ n+i / 

= r 1 ^ - 1 ) - €0(i). 

To estimate V% put 2 3 ^ s ^ > then fi = 5, and 
n 

Fi = 5 cos / — rn+i cos #/ + 2 23 f ' S^n (*/2) sin (*> + 1/2)/, 
2 

hence 
n 

I Fi(0 - * cos / | Ü I r,H.i| + < 2 I r,| 
(5.5) 2

 n 

g | r n + 1 |+«- 1 »- 1 i ; | f r | - é - y i ) 
2 

as /—»0. From (5.4) and (5.5) lim sup^o |#(0~~s| ^€» € being arbi­
trary, we get <£(/)—»$, as /—>0. Our theorem now follows from Theorem 
I. The example 232~w cos 2nt shows that nan need not have a limit. 

Here is an alternative proof for the continuity of <t>(t) at / = 0: 
From (5.2) 

00 

<j>(t) = — ai/2 + 2~123 (an — #n+i) cos nt 
1 

JL sin nt 
+ 2-1 cos (//2) E (*» - **+i) . , ,„, Î 

1 sin (t/2) 

clearly 23 fan—Gn+i) cos nt is uniformly convergent. Furthermore 

sin nt A . sin nt 
2 3 fan - 0n+l) Sin W* « 2 3 «fan - #n+l) « 2 3 an ' ; 

1 1 n 1 n 

where 
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< = n{an - aw+1), ]£ | a/ | = 0(1), by (5.1). 
n 

Now 23?av ~]Cï+la*"""(w+l)an+iï 23an being convergent, it follows 
that n~12?|'0r—>0, and J^a»' is (C, 1) summable to s, hence by Theo­
rem 4 of our paper [3 ] 

* sin /** * 

1 W* i 

Thus </>(t) is continuous at / = 0. 
Theorems 3 and 6 combined yield the theorem : 

THEOREM 7. Suppose that 

2n 

23 | £, ~ <V+i | ~ 0(w~1) as w —> oo, 
n 

and that ^cn is Abel summable; then the power series ^cnz
n is uni­

formly convergent in the circle \z\ g 1. 

It suffices to consider the circle i^l—l; suppose first that the cn 

are real. The uniform convergence of 2jcn cos nt follows from Theo­
rem 6; it also follows that n -^ ï^—^O, and Theorem 3 now yields the 
uniform convergence of ^2cn sin nt. If the cn are complex, cn=an+iftn» 
then apply the result just obtained to ]Ca»*w» 23&nZw. This proves 
Theorem 7. 

6. Further theorems on cosine series. Our next theorem is: 

THEOREM 8. Suppose that for some constants pèzO and q<zO 

(6.1) 0 g (n + lK+i - nsn + p g (1 + q/n) [nsn - (n - lK_i + p], 

sn —Xa0*» and thatYjin is Abel summable; then waw—»0, and ]T/*n c°s nt 
is uniformly convergent. 

Put nsn— (n — l)$tt-i + £ = 5n — $n + (n — l)an + £, $o = 0, then 
^L*8p'=n(sn+p)*z0, SnsZ—p, hence by a well known theorem 
of Tauberian type ^2an is (C, 1) summable, thus the sequence {Sn} 
is (C, 2) summable. This and 0 g 5w+i ̂  (1 +q/n) 8n imply by Lemma 1 
that lim 5n exists, 5»—>8, say. It follows that n-1Y%8p — sn+p~~>8, or 
sn—>S—p—s, and now 

(6.2) waw = 8, - *n + an - ƒ> -» 0. 

Next from (6.1) 
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(6.3) ôn+1 - S% g (q/n)K 

furthermore 
2n 

(6.4) Dn ** £ (ÔP+1 - 5.) « ô2n+i - 8W - 0(1). 
n 

Write Z>n = -£>'+£>", where Z>' denotes the sum of positive terms, 
D"=Dn-D\ From (6.3) 

2w 

O g Z ) ^ gX)"""1^ = 0(1), 
n 

and now from (6.4), \D"\ =0(1), hence 

E l * H - l - * r | =0(1). 
n 

Also ov+i — 5„ = (y+l)(av+i—av)+2a„, thus 

f ^ k i - (h\ g 0(1) + 2X)| a,|. 
n n 

But from (6 .2 ) ,2? | a , | =0(1), hence 
2n 

2 3 | av+i — o , | = O'C»"1)-
n 

Our theorem now follows from Theorem 6. 
We next prove the following analogue to Lemma 1 : 

LEMMA 2. Suppose that Bn^Ofor n>n^ that for some q>0 

(6.5) Bn+1 â (1 — q/n)Bn, n > n0, 

and that (A) lim Bn = B ; then Bn—>B. 

We may assume that q/n<l for n>no\ then from (6.5) 
n+K K ftfi 

E S ^ £ » Z ( 1 - q/n)' = — - {1 - (1 - q/n)-+1}, n > n0> 
n r-0 Ç 

hence 

Bn g — ( # * . - fCi){1 - (1 - q/n)*»}-\ where 
(6.6) : 
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Choose K = [Sw], where S > 0 ; from Abel summability and from J3»g£0, 
it follows that n~lB'n—>B. Now from (6.6) 

qÔB 
lim sup Bn S 

1 — exp (— qS) 

letting h i 0, we get 

lim sup Bn â B. 

Similarly for n — K > n0 

2J Bn-.v g* Bn 22, ( 1 I 

q \ n — K/ \\ n — K/ ) 

hence 

Bn £ (q/(n - jc - g))(I^ - iC« - i ) { ( l - g/(» - *))-(l(+1) - l } - * . 

Let now /c= [»ô], 0 < 5 < 1, then 

tf ( <$> V 1 

lim inf J5W ^ JBI exp 1) , 
1 - 5 \ ^ 1 — 5 / 

and 5 \ 0 yields lim inf J5 W ^5 . This proves the lemma. 

THEOREM 9. Suppose that for some constants p^0t gèO, 

(6 7̂  ^ + 1 ^ w + 1 "" W5n + * 
à (1 - g/»)[iWn - (» - l)sn-i + # ] è 0 , 

and /Aa/ (A) lim sn ~s exists. Then nan—>0 and ]£a„ cos nt is uniformly 
convergent. 

As in the proof of Theorem 8, sn^ —pi hence 2^aw is (C, 1) sum-
mable; then by Lemma 2, 8n—>ô, nan—>0. Next from (6.7) 

àn+i ~ àn à - gw-*1^, and 

(6.8) *» 
A» = Z («H-X - 8.) - 52n+1 - 8n - 0(1). 

n 

Write Dn—D'+D", where Z>' denotes the sum of negative terms, 
D"~Dm-D'. From (6.8), Q ^ I > ' ^ - g E ' V ^ ô , , , hence D ' - O ( l ) , and 
Z)"=:0(1) ; hence J%n\ ôv+i-Ô>\ = 0 ( 1 ) . The remaining part is the 
same as in the proof of Theorem 8. 
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7. Closing remarks. The assumption of Lemma 1 can be writ­
ten as 0 £ J3n+i sS (» + q)/nBn, ' or 0 £ (T(n + g)/r(w))5n+1 

^( r (w+2+l ) / r (w+l ) )B« , that is, T(n)Bn/T(n+q) is decreasing. A 
similar lemma was proved by Hardy; for reference see [2]. Again in 
Lemma 2 the assumption is Bn+iH~(n~-q)/iiBn*zO, or 

(r(ii - q)/T(n))Bn^ £ (r(n - q + 1)/T(n + l))Bn £ 0, 

that is, T(n)Bn/r(n—q) is increasing. The larger q the more general 
is the condition. 

The differences (n+l)sn+i—W5n=Tn+i are the (C, —1) means of the 
series 2^an, that is, sn = w~l]CïT, (TI = $I). The condition (6.1) may be 
written as 

~ 0» + p) S rn+i - TnS (q/n)(rn + p). 

If it holds for some p, then it clearly holds for any P'>p. Similarly 
(6.7) becomes 

Tn+i ~ rn è - (q/n){rn + p) è ~ (rM + p), 

and here too p may be replaced by any p'>p. Clearly summability 
(C, —1) of the series X)^« is equivalent to convergence together with 
nan—*0. 

We have seen that the first inequality of (6.1) and Abel summabil­
ity of ^2an imply (C, 2) summability of the sequence {rn} ; it follows 
from a theorem of Tauberian type t h a t ^ a w converges. It is an open 
question whether this and r n è —p, w = l, 2, 3, • • • , imply uniform 
convergence of X/*n cos nt at t = 0. Theorem IV asserts that this is 
the case if X)a» c o s n^ '1S ^ e Fourier series of a function continuous 
at / = 0. However it is doubtful whether even (C, —1) summability 
of X)ö« itself implies uniform convergence of 23a» c o s n^ o r continuity 
of the corresponding function at / = 0. 
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