ON LINEAR EQUATIONS IN HILBERT SPACE
L. W. COHEN

Given an infinite matrix 4 =||a;|| where a:; is complex and

1) Zla,-,'|2<+oo, i=1,2,++,

i=1

the problem of solving the system of linear equations

-]
(2) Vi = Za;;x,-, 1:=1, 2,”- N
1
has been studied from several points of view. For arbitrary y;,
E. Schmidt! has given necessary and sufficient conditions on the a.;,
9: so that the system (2) have a solution x = (x;) €H, (Hilbert space).
Schmidt shows that if a solution exists, the solution of minimum norm
is unique, and gives explicit formulas for this solution. If 4 defines
a linear transformation T on H; to H,, F. Riesz? gives necessary and
sufficient conditions that an inverse T! exist, that is, that the solu-
tion x=T-1(y) where T-! is a linear transformation. The following
problem stands between these two: Find conditions on the elements
of 4 so that the system (2) have a solution x €H; for each y&H,.
Such conditions will permit the use of Schmidt’s formulas to express
the minimal solution x for each y but this of course does notimply
the existence of an inverse of the matrix 4. We give a solution of this
problem by a method which depends on a property, which seems new,
of the m-rowed minors of the matrices 4,...;, =| a;,,-”lg.g,,.;,;l and on
Cramer’s rule.
Let

a(iy -y imi e oy gm) = det [|ai,if|1s0esm

be the determinant of the columns fi, * + -, jm Of 4. . .4, If B=|[bs]|
satisfies (1) and BY,. . ., is the transposed of By,. . .i,, the determinant
det Asp...ipBl..ip =det |25 10 4bip|| 150,65m is finite. Because of the
continuity of a determinant as a function of its elements

n
2 Gigbig

k=1

3) det Aiy...i,Biy. i, = lim det

158,6S5me
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There is a theorem?® on the minors of products of square matrices
which, with slight modification in its proof, yields the identity

n
det Z aibig
k=1 1S8,tSm
@ )
= E a(ily tt im;jlr cet ’jm)b(il’ R} im;jh cte rjm)v
[i1++iml]

n=m,

where the sum is extended over all combinations ji, « + +, jm in
1, -, n

Tueorem 1. If A, B satisfy (1), then

det 4.. .;mB.{‘. i

0

= E a(ilv tt im;jlr cc 1]'m)b(7:1; Ct 'im;jlv e ,jm)_,

(i1« iml

where the sum is extended over all combinations of positive integers
Ju * * + y m. The series converges absolutely and

I det A,'l. . .,'mB,"l. i I =< [det A,'l. . ..-mZ.-', .. .,'m]1/2 [det B,'l. . 'i'mﬁ"’x .. _',m]1/2.
ProoF. By Schwartz' inequality we have, from (4) and (3) with
B=14,

»

Z |a(i1| STty 'im;jly cre ’]'m)b(ih tt im;jly cre )jm)|

[i1+ - im]

n 1/2
é[ E |a(il" SR PR 'jm)lz:l

[i1++im] » 12
‘[ Z lb(il,"‘,im;jlr'°"jm)lz:|
[i1++ dml
- =/
é [det A,‘l...imA.'l...,‘m]llz[det B,’l...,‘mBil...,‘m]”Z, n g m.

The conclusion is now evident as a consequence of (3).
If we define

0
lAB’I = hmmsup sup E a’(ilr ] 'im;jlv cte tjm)x
DEERL S FERRE 7|

Xb(il,' M ’im;].lv v ’jm)

3 C. C. MacDuffee, An introduction to abstract algebra, New York, 1940, Theorem
99.1, p. 216.
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we have a Schwarz inequality for matrices:
| AB'| < | A4’ |12| BB |12,

The following lemma contains the Gram condition for linear de-
pendence.

LeEMMA 1. The following statements are equivalent:
(a) The rows of Ai.. .. are linearly dependent.
(b) Det A1...nA{ ...n=0.

(c) AUl m-rowed minors of Ai...n equal zero.

Proor. That (a) implies (c) is immediate. The equivalence of (b)
and (c) follows from Theorem 1 with 4 =B. It remains to show that
(c) implies (a). This is evident if m =1. Assuming this statement for
m—1, it is true for m if all the (m —1)-rowed minors of 4, vanish.
If one such minor does not vanish, say

det ”aij”1§i,i§m—1 # 0,

we denote by c¢i the cofactor of ai» in the determinant of the first m
columns of A4;...n. Then ¢,70 and

> crari = 0, j=1,---,m—1.
k-ﬂl

But this sum vanishes for all other values of j because of (c). Hence
(c) implies (a).

THEOREM 2. If A satisfies (1), the finile system

(5) Vi = Zaiixiy 1= 1,"' y m,

i=1

has a solution x EH, for each y1, * * « , Ym if and only if

det Al,,:‘f{m £ 0.

Proor. The necessity is a consequence of Lemma 1. If the condition

is satisfied, then there is a nonvanishing a(1, « « «, m; ji, * * *, jm)
by (c) of Lemma 1 and a solution x = (x;) where x;=0forj=ji, * * *.jm
and xj;, * + +, xj, are determined by Cramer’s rule.

COROLLARY. If A satisfies (1) and the system (2) has a solution x ©H,
for each y EH,, then det Ay...nd{ ...n5%0 for all m.

An estimate of the minimum norm of the solution of the finite sys-
tem (5) may be given in terms of a series of finite minors in 4. . .i,,.
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Let J=[j, - - -, jm] be a combination of m distinct positive integers
and let S, be a set of J such that no two J's have a common integer
while every positive integer is in some J&Sn. Let

1/2
L [Sup Z Ia("rly"'vim;jly"'1jm|2] ’

8, JESH

1/2

ail"“'m=[ E |a(ilr"'vim;]‘1"",jmlz:l .
[i1- - im]

Since Sn is a subset of the sum of all i, - -, jm We have the following
lemma.

LEMMA 2. 05y i)y SQiye v vipy

sup Z Z |a(1, co k=1 kL MGy Jeetfetty o Gim) |2

8, JES, s=1
0

é Z la(l,"',k—1,k+1y'°')m;jly"'sjm—l)lzo
[i1: - im=1]
THEOREM 3. If A satisfies (1) and the finite system (5) has a solution
x™C H, for each y™=(y1, * * * yYm, 0,0, « + + ), then
2]1/2

i [|a=] = |l 32
k=1
Proor. By Theorem 2, det 4;.. ...m®0and so a;...n#%0. Let
Mg, be the cofactor of agj, in a(l Sy My J1y cty Jm)- The system
(5) has a solution 7. . ., defined by

A1, k=1,k+1,0 00 ,m

1-eem

m {ZykM;:j/d(l,"',M;jl,"’yjm), j=j1r"'tjm1
Xisiresoim = § k=1
0, ]‘#jlv"'s].m-
We have
I sall’ | @y - ims oo i) |
m m 2 m m
= Y| X wMi| =P | M
o=l | k1 o=l k=l

“ym“222|a(11"'lk-11k+1""tm;

8e=] keml o . o .
Jis * s Je=1y Jet1y * * * ’]m) |2-
Hence


jb.il
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inf [[o'ed.m 5 571" 22 sup 2 > a1, - -1,

b=l 8, JES&, s=l
m k"l"l""y’n;]l"’]c—l]c+1"'jm)|2
my 2 2
= ”y ” Zal,...,k._1,k+1,...,m
k=1

by Lemma 2. The conclusion follows at once.
A sufficient condition for the solution of the system (2) for each
yEH may be obtained by restricting the constants

m 2-11/2
am=[2 ] , m=1,2,-

k=1
THEOREM 4. If A satisfies (1), its rows are linearly independent, and
a=lim inf,, an < -+ ©, then for each yE H, the system (2) has a solution
xEH, such that

A1.vl—1,k41,00,m

Aleeem

lall = ofls]-

Proor. Consider any yE H, and any ¢>0. The sequence contains
a subsequence am, <o+ e From Theorem 3 it follows that for each p
there is an x*=(x{) ©€H, such that

y.=Zaij';', 1=1,--,my,
Jm=1
o]l = (@+ ollsll.

Applying a diagonal process to (x}) one finds a subsequence x*» = (x}”)
and an x=(x;) €H, such that

limx';-'=x,-, j=1,2»"'t

ol = (a+ o)l9l.
Since for ally, N>0and 1Z:5m,,
0 N 0 0
— X aiwi= > ai(wy — &) + X auxi — X, @i,
=1 j=1 F=N+1 j=N+1

x solves the system (1).

Now consider €, | 0. For each # there is an ¥*&H, which solves
the system (2) and such that ||x*|| < (e+ e)||s]|. Repeating the diago-
nal process and the above argument, one finds an ¥ €H; such that
||2/| <lly|| and which solves the system (2).
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