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In this paper we make use of the work of G. T. Whyburn1 on light 
interior transformations and on orbit decompositions of certain spaces 
to obtain a theorem by means of which a certain subset of the orbits 
of points under a periodic transformation T(M) = M may be given a 
linear ordering. This theorem is then used to obtain an accessibility 
theorem for plane continuous curves similar to one previously pub­
lished by L. Whyburn.2 We take this opportunity to express our in­
debtedness to G. E. Schweigert for suggesting the proof of Theorem I 
given below and thus eliminating the longer and less interesting proof 
previously obtained by the author. For any xÇîM, the orbit of x un­
der T means 0(x) =^2?—<*?*&). 

THEOREM I. Let M be a locally connected continuum (that is> a con­
tinuous curve) and T(M) = M an arbitrary periodic homeomorphism. 
Then if a and b are arbitrary points of M lying in different orbits under 
T and if axb is any simple arc in M joining a and b, then there must exist 
a simple arc a'x'b' in M lying in the orbit of axb under T such that a1 

belongs to 0(a), bf belongs to 0(b) and no two points of arxfbf lie in the 
same orbit under T. Furthermore, the point a1 may be any arbitrary pre-
assigned point of the orbit of a. 

Proof (Schweigert). Let M' be the hyperspace obtained by de­
composing the space M into its orbits under T. Then, since the orbit 
decomposition is continuous,8 it follows4 that there exists a light in­
terior transformation ƒ(M) = M', namely, the transformation given 
by and associated with the orbit decomposition. Let axb be the given 
arc in M. Then we may assume without loss of generality that axb 
has precisely the point a in common with 0(a) and precisely the point 
b in common with 0(b), Define K=f(axb). Then K is a locally con­
nected continuum containing c=f(a) and d =ƒ(&). Let cyd be an arc 
in K joining c to d. Now let a' be an arbitrary point of 0(a). Then5 
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1 See G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publica­
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there must exist a simple arc a'x'b' in M such that f(a'x'b') = cyd is 
topological. By definition of ƒ we see that each point of a'x'b' be­
longs to the orbit of some point of axby and from the one-to-oneness 
of this transformation it is immediate that no two points of a'x'b' lie 
in the same orbit under this transformation. This completes the proof. 

COROLLARY. The same conclusion holds for any pointwise periodic 
T(M) = M if we impose the additional restriction either that T have equi-
contirmous powers9 or that the period function remain bounded on the 
arc axb. 

The accessibility theorem for plane continuous curves mentioned 
in the introductory paragraph of this paper may be stated as follows. 

THEOREM A (L. WHYBURN). If M is a plane continuous curve and 
T(M) = M is a homeomorphism and if C is an element of a rotation 
group of M under T of order at least twof then C has property S.7 

The object of our second theorem is to obtain a result similar to 
Theorem A, but with the emphasis in the hypothesis placed upon the 
type of the transformation T rather than upon the order of the rota­
tion group under consideration. Before stating the theorem we recall 
certain important subsets of M. By L we denote the closed invariant 
subset of M consisting of those points at which the period function 
has an unbounded limit superior. By K we denote the collection of 
all fixed points of M under T. If R is a component of M—K, then R 
is an element of a rotation group under T\ this rotation group consists 
exactly of the orbit of R under T; and its order is the number of com­
ponents which it contains. The order of a rotation group under T 
may, of course, be either finite or infinite. 

We are now in a position to state our second theorem. 

THEOREM II. Let M be a plane continuous curve and T(M) = M an 
arbitrary homeomorphism, while R denotes an element of some rotation 
group of M under T. Then 

(a) If K is locally connected then R has property S and every point 
of F(R) = R—R is regularly accessible* from R. 

(b) If T is pointwise periodic and has equicontinuous powers we get 
the same conclusion as in (a). 

(c) If T is pointwise periodic then every point of F(R) which is not 
a point of L is regularly accessible from R. 

Proof. Note that (a) is immediate from a theorem of G. T. Why-

• See G. T. Whuburn, loc. cit. p. 258. 
* See G. T. Whyburn, loc. cit. p. 20. 
» See G. T. Whyburn, loc. cit. p. 111. 
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burn,9 and that it also follows at once from the proof of Theorem A. 
We give the proofs of (b) and (c) simultaneously, making use of 

the corollary to Theorem I in each case. It is to be noted that our 
proof is similar to the original proof of Theorem A. 

Denote by d a positive number exceeding the diameter of the set M, 
and suppose that M is embedded in the upper half of the Euclidean 
plane. If the theorem be false there must exist a point p in F(R) which 
is not regularly accessible from R and (unless T has equicontinuous 
powers) such that p does not lie in L. This means that there exists a 
positive number e and a sequence of points {pi} of R converging to p 
such that no two points of this sequence may be joined in R by a 
connected set of diameter less than 17e. Let Cp be a circle of radius 8e 
having its center at the point p. No generality is lost by the following 
assertion : 

(1) For every i the set O (pi) lies within Cp; no two of the points pi 
may be joined by a connected subset of R lying within this circle; and if T 
does not have equicontinuous powers then there exists an integer N such 
that no point of M lying within Cp has period greater than N under T. 

For some point q' of R exterior to Cp we construct arcs piqf in R 
for every integer i and we denote the first intersection of the arc piqf 

with the circle Cp by qi. It follows from (1) that the arcs piqi are pair-
wise disjoint and we may assume, exactly as in the proof of Theo­
rem A, that this sequence of arcs converges to a limiting set H which 
is a subcontinuum of K. Making use of the corollary to Theorem I 
we can insure that no arc piqi meets the orbit of any point of M in 
more than a single point, and that no two of these arcs meet the orbit 
of the same point of M. This means, in particular, that no two con­
secutive images under T of any one of these arcs will have a point in 
common. We may assume that the sequence {qi} converges mono-
tonically on Cp to a point q. 

We place the #-axis in such a position that p lies at the point 
(-4e, 2d) and q dit the point (4e, 2d). By Li (i= ± 1, ±2, ±3) we de­
note the line segment joining (ie, 0) to (ie, 4d), and by A\j the interi­
or of the rectangle formed by £*, L j, y = 0, and y =*4cd. 

Using the fact that H is a subset of K and either (b) or (c)10 we may 
make the following assumption without loss of generality: 

(2) If x is any point of any arc piqi then 0(x) lies within a circle 
having its center at some point of H and diameter e/2. 

Let riSi be a subarc of piqi with its interior in P-3,3 and its end 

9 See G. T. Whyburn, Concerning the open subsets of a plane continuous curve, 
Proc. Nat. Acad. Sci. U.S.A. vol. 13 (1927) pp. 650-657, in particular Theorems 1 and 
5 of this paper. 

10 See G. T. Whyburn, Analytic topology, loc. cit. p. 252. 
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points on Z,_3 and i 3 ; risf the are T(riSi); xlyl a subarc of rfsi with 
its interior in D-2,2 and its end points on i_2 and i 2 ; and Xiyi the 
arc T"-1{xiyi). The existence of the arc xiyi follows from (2) and 
by the same token we see that x%yi is a subarc of r<$< having its end 
points in the respective regions Z>-3,-i> D\t%. Now the,sequence of 
arcs {xiyi } may be assumed to converge to a subcontinuum H' of H 
which is, of course, disjoint with every one of these arcs. This means 
that by taking a subsequence the following assumption will hold. 

(3) For any fixed integer i and every k exceeding i the arc xiyi sepa­
rates jD-2,2 between x'y' and xiyi for every n greater than k. Thus 
xiyi separates D-2,2 between xiyi and H' for every k exceeding i. 

For any fixed value of i we know that the closed sets Ofayi) and 
H' are disjoint, which means that there will exist a region U% in the 
plane containing H' but disjoint with 0(#o>»)« We may assume that 
Ui contains Ofay*) for every k exceeding i. We also know, in view of 
this last remark, that for i fixed either x&i separates -D-1,1 between 
xiyi and every xiyi for k exceeding i or xiyi separates this region 
between Xiyi and xiyi for every k exceeding i. By taking a subse­
quence and renumbering we can insure that the same one of these 
two statements holds for every value of i and thus obtain the follow­
ing assertion. 

(4) If i and k be any two distinct integers then in the region -D_i,i the 
four arcs xiy*, x'yi, Xkykt xiyi must occur either in the order just spec­
ified or in the alternative order xiyi, xtyt, xiyi, Xt>yk* 

No generality is lost by the assumption that for every integer i 
the arc Xiyi has an interior point within the circle CB, having its center 
at a point z on the ^-axis and radius sufficiently small so that any 
two points of M lying within Cg may be joined by an arc of M the 
orbit of which lies within Z>_i,i. This enables us to find a simple 
arc aibk lying in M with 0(aibk) in i9_i,i and having exactly the points 
at-, bk in common with xtyt and #*#*, respectively. As the two arrange­
ments given in (4) are symmetrical we need treat only the case of the 
first one ; the other will follow by a simple interchange of the letters i 
and k. From (1) we see that the arc #»&& must contain at least one 
point of the closed set K, and we denote by fa the last point of K 
on this arc. Then if gk be the first point of 0(xkyk) on the arc ƒ«&*, it 
follows that for some integer n the point gi = Tn(gk) lies on the arc 
xiyi. Thus the arc fikgi == Tn{fihgk) is a simple arc lying in D-1,1 and 
joining the point fik to a point of xiyi, while containing no point of 
Xkyk- This contradiction completes the proof of Theorem II. 

UNIVERSITY OF MARYLAND 


