CONVERGENCE REGIONS FOR THE GENERAL CONTINUED FRACTION

W. J. THRON

The purpose of this note is to prove convergence region theorems for continued fractions

(1)
$$\frac{a_1}{b_1} + \frac{a_2}{b_2} + \cdots,$$

where the a_n and b_n are complex numbers. As an application we obtain a new theorem for the associated continued fraction

(2)
$$\frac{a_1}{b_1+z} + \frac{a_2}{b_2+z} + \cdots$$

This continued fraction plays a rôle in the moment problem and is also otherwise of interest as a means of representing analytic functions. For details see Perron [4, chapters 8 and 9].¹

Recently a continued fraction very similar to (2) has been investigated by Hellinger and Wall [1]. They chose the name "J-fraction." A J-fraction is a continued fraction of the form

(2)'
$$\frac{1}{b_1+z}-\frac{c_1^2}{b_2+z}-\frac{c_2^2}{b_3+z}-\cdots.$$

Our result for J-fractions is stated in Theorem C.

The results of this note are closely related to an as yet unpublished work of Wall and Wetzel on "positive definite *J*-fractions." In particular Theorem C seems to be contained in a theorem of theirs.

In what follows we shall denote by $H(b, \gamma)$ the half-plane (including the boundary) defined by the relation $z \in H(b, \gamma)$ if $\Re(ze^{-i\gamma}) \ge b$. For the open half-plane we shall use the notation $H_0(b, \gamma)$. It is clear from the context that b is a real number. Further for a > 0, $P(a, \gamma)$ shall be the parabolic region (including the boundary) bounded by the curve

$$\rho \leq \frac{a^2/2}{1-\cos\left(\theta-2\gamma\right)}.$$

For a = 0, $P(a, \gamma)$ is to be the totality of points $r \cdot e^{i\gamma}$, $r \ge 0$.

Presented to the Society, September 13, 1943; received by the editors April 24, 1943.

¹ Numbers in brackets refer to the references listed at the end of the paper.

We are now in a position to state our theorems.

THEOREM A. The continued fraction (1) converges if all the a_n lie in a bounded part of the set $P(a, \gamma)$, $a \ge 0$, and if all b_n lie in the half-plane $H(a + \epsilon, \gamma)$, where ϵ is an arbitrary small positive number.

Even though its statement is somewhat involved it seems worth while to state the following theorem too, as it is a generalization of the parabola theorems² for the continued fractions with $b_n=1$.

THEOREM A'. In the continued fraction (1) let all b_n lie in the angular opening

 $\left| \operatorname{arg} e^{-i\gamma}(b_n-1) \right| < \pi/2 - \epsilon,$

where $-\pi/2 < \gamma < \pi/2$ and ϵ is an arbitrary small positive number. Further let all the a_n lie in the parabolic region $P(\cos \gamma, \gamma)$. Then the continued fraction (1) converges if and only if $\sum |b_n d_n| = \infty$, where $d_1 = 1/a_1$, $d_n = 1/d_{n-1}a_n$.

It is well known that the last condition of the theorem is satisfied if $\lim \inf a_n < \infty$. We note that neither of these two theorems is contained in the other. Both theorems could be used to obtain new "multiple" convergence regions for continued fractions $1+K(a_n/1)$. For both of these theorems there are corresponding theorems for associated continued fractions and *J*-fractions. We only state the theorems corresponding to Theorem A.

THEOREM B. If real numbers $a \ge 0$, M > 0, b and γ exist such that for all $n \ge 1$, $a_n \in P(a, \gamma)$, $|a_n| < M$ and $b_n \in H(b, \gamma)$ then the associated continued fraction (2) converges uniformly and hence to a holomorphic function of the complex variable z in every closed region contained in the half-plane $H_0(a-b, \gamma)$.

It is easily seen that if $a_n \in P(a, 0)$ then $c_n = a_n^{1/2}$ satisfies the relation $|\Im(c_n)| \le a/2$ and conversely. Hence the following theorem for *J*-fractions is an immediate consequence of Theorem B with $\gamma = 0$.

THEOREM C. If real numbers $a \ge 0$, M > 0 and b exist such that for all $n \ge 1$, $|\Im(c_n)| \le a/2$, $|c_n| < M$ and $\Im(b_n) \ge b$ then the J-fraction (2)' converges uniformly and hence to a holomorphic function of the complex variable z in every closed region contained in the half-plane $\Im(z) > a - b$.

The theorems are based on the following lemma.

LEMMA. All the approximants of the continued fraction (1) lie in the half-plane $H(-b/2, \gamma)$ if for all $n \ge 1$, $a_n \in P(b, \gamma)$ and $b_n \in H(b, \gamma)$, where $b \ge 0$.

² See Leighton and Thron [2] and Paydon and Wall [3].

The proof of the lemma is by induction. To perform the induction we require the following two relations: for an arbitrary choice of $a_n \in P(b, \gamma)$, $b_n \in H(b, \gamma)$ and $v \in H(-b/2, \gamma)$ the two relations

$$(3) a_n/b_n \in H(-b/2, \gamma)$$

and

$$\frac{a_n}{b_n + v} \in H(-b/2, \gamma)$$

must be satisfied. We note that (3) is a consequence of (4) as $v=0\in H(-b/2,\gamma)$. Further as b_n and v vary independently over their respective regions their sum b+v varies over the half-plane $H(b/2,\gamma)$. It is then easily seen that relation (4) is satisfied if $P(b,\gamma)$ is the part common to all the regions $c\cdot H(-b/2,\gamma)$, $(z\in c\cdot H(-b/2,\gamma))$ if $z=c\cdot v$, where $v\in H(-b/2,\gamma)$ where c varies over $H(b/2,\gamma)$. For the proof of this fact we refer the reader to [2, §2], where a very similar fact is proved in detail.

We now proceed to the proof of Theorem B. Under the conditions of that theorem $b_n+z \in H_0(a,\gamma)$ for all $n \ge 1$. According to the lemma all the approximants of the continued fraction (2) then lie in the halfplane $H(-a/2, \gamma)$. All approximants are finite. This is seen as follows: In order that an approximant be infinite it is necessary that

$$-(b_1+z) = \frac{a_2}{b_2+z} + \cdots + \frac{a_n}{b_n+z}.$$

This is impossible as the regions $-H_0(a, \gamma)$ and $H(a/2, \gamma)$ have no point in common.

The approximants of (2) are rational functions of z; for z in $H_0(a-b, \gamma)$ they are finite and do not take on certain values (more than two), hence by Montel's Theorem the sequence of approximants forms a normal family of holomorphic functions for z in $H_0(a-b, \gamma)$.

As the $|a_n|$ are bounded there exists an M such that for |z| > M, $z \in H_0(a-b, \gamma)$,

$$|b_n + z| > |a_n| + 1$$

for all n. For these values of z the continued fraction converges by Pringsheim's Theorem [4, p. 254]. It then follows from the generalized Stieltjes-Vitali Theorem that the continued fraction converges uniformly in every closed region contained in the half-plane $H_0(a-b, \gamma)$. This completes the proof of Theorem B.

Theorem A follows from Theorem B if we set a = b and let $z = \epsilon e^{i\gamma}$.

For the proof of Theorem A' we consider the continued fraction

(5)
$$\frac{a_1}{1+d_1e^{i\theta_1z}+1+d_2e^{i\theta_2z}+\cdots,}$$

where $a_n \in P(\cos \gamma, \gamma)$, $d_n \ge 0$ and $|\theta_n - \gamma| < \pi/2 - \epsilon$ for all $n \ge 1$.

Under these conditions the approximants of (5) form a normal family of holomorphic functions for z in the region D defined by

$$-\delta < \Re(z) < 1 + \delta,$$

where δ is positive and depends on γ and ϵ . The proof of this fact is similar to the proof used in the previous case. For $\Re(z) = 0$ the continued fraction converges. In this case the partial denominators are real and greater than or equal to 1 and hence (5) can be transformed into a continued fraction of the form

$$\frac{g_1}{1} + \frac{g_2}{1} + \cdots,$$

where all $g_n \in P(\cos \gamma, \gamma)$. The convergence of this continued fraction follows from the parabola theorems (we are assuming that all conditions of Theorem A' are satisfied). The Stieltjes-Vitali Theorem then insures the convergence of (5) for all z in D. If we recall that $\sum |c_n| = \infty$ is a necessary condition for convergence we have Theorem A' by setting z = 1 in (5).

REFERENCES

- 1. E. D. Hellinger and H. S. Wall, Contributions to the analytic theory of continued fractions, Ann. of Math. vol. 44 (1943) pp. 103-127.
- 2. W. Leighton and W. J. Thron, Continued fractions with complex elements, Duke Math. J. vol. 9 (1942) pp. 763-772.
- 3. J. F. Paydon and H. S. Wall, The continued fraction as a sequence of linear transformations, Duke Math. J. vol. 9 (1942) pp. 360-372.
 - 4. O. Perron, Die Lehre von den Kettenbrüchen, Leipzig, 1929.

THE RICE INSTITUTE