EXACT »TH DERIVATIVES
HOWARD LEVI

Let y be a function of x with derivatives of all orders, and let 6
be a function of x, ¥, and a finite number of derivatives of y. If, in-
dependently of the choice of the function y, 6 is the nth total deriva-
tive of some function ¥ of x, y, and derivatives of y, then we shall
call 6 an exact nth derivative. The problem with which this note is
concerned is to determine, for any given function 6 and positive in-
teger #, if 0 is an exact nth derivative. The case for which n=1is
completely covered by the well known Euler differential equation
which arises in the simplest problem of the calculus of variations. For
a function 6 to be an exact first derivative, it is necessary and suffi-
cient that 6 satisfy the Euler differential equation. The contribution
of this paper is the treatment of the cases in which # exceeds unity.
A system of # differential equations is developed, satisfaction of which
by @ constitutes a necessary condition that 6 be an exact nth deriva-
tive. These equations do not yield an altogether satisfactory suffi-
cient condition. It turns out that if 0 satisfies the equations in ques-
tion, it may still fail to be an exact nth derivative. However, under
these circumstances, § must differ from an exact nth derivative by a
function of very special character.

Notation. Let us suppose y to be an arbitrary function of x possess-
ing derivatives of all orders. We shall denote the jth derivative of y
with respect to x by v;, and sometimes denote y itself by y,. We sup-
pose 0 to be a function of x, y, and of finitely many of the y;,
possessing partial derivatives of all orders with respect to all its argu-
ments. The operation of differentiation with respect to x will be
indicated by the symbol D; thus D=9/0x+) ¥:119/dy:.. We shall
understand that the range of the subscript ¢ in D extends from zero
to plus infinity, recognizing that when D operates on a function of
x, v, and of finitely many of the y; it reduces to a finite sum. The
symbol D‘, where 7 is a positive integer, will denote the operation of
taking the 7th derivative. We shall use the expression C,,, to denote
the binomial coefficient p-(p—1) - - - (p —g+1)/q! where g is a non-
negative integer and p is any integer.

Summary of results. Let n be a positive integer. Let opera-
tors E; t=1,---, n, be defined as follows. Expand, formally,
E;=(1+4D3/3y,)~'d/0y as the product by d/dy of a power series in
D3 /3y, and replace terms (DJ/dy,)d/0y by Dd/dy.. Let there be a

Received by the editors January 15, 1943.
631



632 HOWARD LEVI [August

function ¢ of x, v, and of finitely many y; such that D =0 identically
in x and y. Then!

1) Ef =0, t=1,2,---,mn,

identically in x and y.

We also establish a partial converse to this result. Let 0 satisfy
equations (1) identically in x and y. Then there exist polynomials in x
T, Ta, * * + , Ta_1, Where the degree of each nonzero ;s less than i, such
that 0 —miy1— + - + —Tp_1Yn-1 15 an exact nth derivative. Note that no
term in yo need be subtracted from 6 to render 6 exact, so that for »
equal to unity we see that 6 itself is a first derivative if it satisfies (1).
The equation E;0 =0 is simply the Euler differential equation, so that
for n equal to unity our result restates the well known property of the
Euler equation.

Necessity proof. We use the relations

a min (r,n)
(2) D*= Y C,:Dri )
oy, =0 0Yr—i
r=20,1,2,---;n=123- -,

which we proceed to establish. For 7 equal to zero, this amounts to
the statement that (8/dy)D»=D"d/dy, n=1, 2, 3, - - - . Clearly

9 ] 9

~—D=— 1 It
( +Zy+lay,~> 6y6x Zy+

dy dy \a

2

Since the order in which the partial derivatives are extracted can be
reversed, this last expression equals Dd/dy. This disposes of the case
r=0, n=1, and the cases =0, # arbitrary, follow immediately.

We now treat the cases in which 7 is greater than zero. In evaluat-
ing (8/0y,)D we must consider that y, appears in the term v,0/0y,_1
as a coefficient of a partial derivative, which was not the case for
equal to zero. We obtain then

i} D=D ] n ]
ayr ayr ayr—l
Consequently,
9 ]
D" = D— D1 + D1,
ayr ayr 3%-1

Proceeding by induction, we assume that the right member of this

1 These equations are written out explicitly as equations (4) below.
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equation has a representation

min (r,n—1) a min (r—1,n—1)
D Z Cp—r, D17 —— + Z Cpy, D171
=0 Vr—i =0 0Yr—1-4

Collecting similar terms, we see that the coefficient of D"~ /dy,_; is
Cn-1,i+Cn1,i_1. It is well known that this sum is C,,;. This suffices to
prove that if relations (2) hold for values less than # and less than or
equal to 7, they likewise hold for # and 7. It remains to discuss the
transition from # and r—1 to # and 7. This part of the proof is so
similar to the foregoing discussion that the details may be omitted.

From now on # is to be a positive integer, arbitrary but fixed.

We multiply both members of the rth of equations (2) by Dr,
r=1, 2, - - -. As a consequence, the power of D which multiplies
any given /9y, is the same in all the modified equations (2) in which
the expression appears, namely the (z+s)th power.

Denote the terms D7(d/dy,) D" by A,, r=0, 1, 2, - - - . After the
above multiplication, equations (2) furnish us expressions for the
A, as linear combinations, with numerical coefficients, of terms
Dn+39 /3y,. The numerical coefficients can be readily obtained. A term
Dn+59 /3y, appears first in the expression for A,, and is present, in

all, in Ay, Agyq, - -, Agyn. Its numerical coefficient in each of these
A3+i iS Cn,i.
We now seek numbers ay, a1, @z, - + -, such that Z{';oaiAi is identi-

cally zero; that is, in this sum the numerical coefficient of each term
Dnt33 /9y, is to be zero. This implies that the a; must satisfy

@3) > 4riCai = 0, r=20,1,2,-
=0

In order to solve these equations with a minimum of computation, we
formulate an equivalent problem involving power series. Let # be an
indeterminate and let Zaiu" be a formal power series in %, with nu-
merical coefficients. Observe that in the product (1+u)"Y au’ the
coefficient of u»tr, =0, 1, 2, - - -, is precisely the left member of the
corresponding equation (3). Thus if we can attribute values to the a;
which make the above product a polynomial of degree less than #,
these a; will also be solutions of (3). But the solution of this problem is
immediate. Expand any one of the fractions 1/(14u)?%, t=1, - - -, n,
as a power series in #. The coefficients obtained in this way obviously
serve as solutions for the polynomial problem, and, consequently,
furnish solutions for equations (3).

The proof can now be quickly completed. Let 6 be the nth derivative
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of a function ¥; in symbols §=Dm). Then D730/dy,=A. Since
> aA,=0 we have Y a,D738/dy,=0. Using explicit values for the a,
we have

a0 d a6

(4) — 4+ >.C_,D'— =0, b=1,2,-,n
33’ r=1 ayr

The details of the proof make plain the connection between equations

(4) and equations (1).

Sufficiency proof. We need the following lemma.

Let n be o positive integer and let w(u) be a polynomial in u, not
identically zero, whose degree is less than n. Then in the expansion of
the function u(u) =m(u)/(1+u)"* as a power series in u the coefficients
of no n consecutive powers of u are zero.

This is obviously true for # equal to unity, for the series of 1/(1+u)
has no missing terms, and multiplication by a nonzero constant
cannot introduce any such terms. We prove the lemma by induc-
tion on n. Representing m(#) as a polynomial in (14u), we have
m(u) =bo+b1(14+u)+ - - + +bpo(14+u)*24b,_1(14u)"! where not
all the b; are zero. After being multiplied by (1+4#) our function
has the form

(5) (L+uw)u(w) = [bo+b:1(14-2)+ - - - +bas(14+u)2]/(142) " +bpor.

The number of missing terms in u(«) is related in a simple way to the
number of missing terms in the product of this function by (1 +4u). We
distinguish two cases. If the first # coefficients of u(u#) are zero, then
they are likewise zero in the product. If, on the other hand, at least »
consecutive coefficients in u(#) are zero, and if furthermore this gap
is preceded by nonzero terms, then in the product at least —1 con-
secutive coefficients are zero and this gap must also be preceded by
nonzero terms. We show that each of these cases leads to a contradic-
tion. We may suppose that not all of by, b1, + - +, ba_2 are zero, for
otherwise the problem reduces to the case of # equal to unity. Thus
we see from (5) that (14+u)u(u) is the sum of a constant and a func-
tion which is subject to our induction hypotheses. This function can
have at most #—2 consecutive missing terms. We have seen that if
u(u) is to lack # consecutive terms, (14+u)u(x) must lack at least
n—1 such terms. We have also seen that in (5) the first summand
can have at most # —2 missing terms. We conclude that it is the addi-
tion of b,.1 to this summand which contributes another zero coeffi-
cient. But this can only be the case if it is the first #—1 terms of
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(14+u)u(u) which are zero. In this case our argument shows that if
u(u) lacked 7 consecutive terms, (1+4u#)u(x) would also have # con-
secutive missing terms. This discrepancy proves the lemma.

We are now in a position to prove our partial converse to the result
established above. Let 6 be a function of x, y, and the y; such that
the relations Ef8=0, t=1, 2, - - -, n, are identities in x and y. If
the partial derivatives of 6 with respect to all the y; vanish, then 6
is a function of x alone, and is certainly an exact »th derivative. We
assume henceforth that not all these partial derivatives of 8 vanish.

Let m be the largest integer for which d0/0y.,, 0. Assuming that m
is not less than #, we are going to show that there exists a function ¥
such that 6 —Dm) contains effectively no derivative y; of order
greater than n—1. For this purpose we prove first that 0 is lin-
ear in ¥,, and that in 6 the coefficient 96/0y, of y, is free of

Ym—1y Ym—2y * * * y Ym—n+l.
It follows from the theory of determinants that there exist con-
stants by, bs, + - -, by, not all zero, such that 6:E;+b:Es+ - - + +0,.E,

is free of D0/dy; where ¢ has values from m—n-+41 to m—1 inclu-
sive. By virtue of our lemma, this linear combination of the E; must
contain effectively the expression D™d/0y... We suppose the b; selected
in such a way that the coefficient of this expression is unity. Then, be-
cause 0 does not contain a y, with s greater than m, we have

" a6 a0 a0
(6) ZbiE,-0=D"‘ + ¢cDmn ++g__,
i=1 aym aym—n ay
where ¢, - - -, g are constants. The operators E; are linear, so our

assumption that 6 is annulled by the E; implies that both members of
(6) are zero. If the term D™30/dy,, is zero, it must be that 36/dy.,, is a
polynomial in x of degree less than m. This certainly agrees with our
statement concerning the manner in which v, is present in 6. Assum-
ing now that this term is not zero, we show that d6/9y., is free of
Yy Ym—1y * * * » Ym—nt1. SUppose this is not so. Let y, be the derivative
of greatest order effectively present in 368/0y,. Then v, is effectively
present in D"930/9y.,. The other terms of the right member of (6) can-
not contain effectively derivatives of y of order greater than 2m —mn,
because the partial derivatives of 0 are of order at most m and the
differentiations increase this order by at most m —#n. Thus m -7 does
not exceed 2m —n, whence 7 does not exceed m —#n. This shows that
0 differs from ¥,,00/3y. by a function of order less than m, and that
30/0y. is free of Ym, Ym—1, * * * , Ym—nt1.

We now introduce an auxiliary function ¥,, described by the rela-
tion
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J f a0 J
m aym ym-—n,

where the integration is performed with respect to ¥m—., treating
%,9,¥1, * * *,Ym_n as independent variables. Because of the use of the
indefinite integral in its definition, ¥, contains an arbitrary additive
function of «x, ¥, y1, - - +, ¥m—n_1; thus the integration actually leads
to many functions, some of which may not possess partial deriva-
tives of all orders. However, the integration also yields functions with
partial derivatives of all orders, and it is from these that we suppose
a definite Y., to be selected. This function also has the property that
its partial derivative with respect to Vm—, is 80/0y.. Because the
order of 36/dy.,, is less than m —n 1 it follows that Dy, differs from
Ym-n+100/3y, by a function of order less than m—#-1. Similarly
Dy, differs from y,,00/dy., by a function of order less than m. Then
the order of —Dm™Y,, is less than m. In addition, this difference is
annulled by all the operators Ej, - - -+, E,. If the order of 6 —D™},,
exceeds #—1 we can follow the same procedure with this new function
subtracting from it an exact nth derivative and reducing its order
still further. After a finite number of steps we obtain a function ¥ such
that the order of 6 —D™} is less than #.

Let us denote the difference § — D™ by 7. It may be that 7 is identi-
cally zero. In this case 0 is an exact nth derivative. Even if 7 is not

zero, it must still be annulled by Ej, - - -, E,. Because the order of 7
is less than #, the equations E; =0, {=1, 2, - - -, n, constitute a
system of # homogeneous linear equations for the # quantities
97/dy, DAt /dyy, - - -, D*"107/dy._1. It follows from the lemma that
the determinant of this system is not zero. We conclude that each of
the quantities d7/dy, Dd7/dyy, « - - , D*'07/0y,_1 is zero. Thus 7 is a
function of the form my;+meye+ - - + +mTu_1yn1 where each m; is a

polynomial in x of degree less than 7. We do not ovérlook the fact that
7 could also contain a term free of the y; but since such a term, being
a function of x alone, would be an exact nth derivative, we may sup-
pose it incorporated into y. This completes the proof of the results
enunciated at the beginning of the paper.
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