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Introduction. Let a non-ruled surface 5 be referred to its asymptotic 
net as parametric. As a point Py moves along a curve C\ of S, the 
tangents at Py to the u- and ^-asymptotic curves of 5 describe two 
ruled surfaces R" and R{> respectively. Let Sp and S, denote arbitrary 
transversal surfaces of the congruences of u- and ^-tangents of S, re­
spectively. The purpose of the present paper is to introduce and 
study systems of curves of 5 which will be called p- and a-tangeodesics. 

DEFINITION. A curve C\ of S whose associated ruled surface R% inter­
sects the surface Sp in an asymptotic curve of R£ is a p-tangeodesic of S. 
Similarly f a curve C\ of S whose associated ruled surface R{ intersects 
S<r in an asymptotic curve of R{ is a a-tangeodesic of S. 

The p- and a-tangeodesics of 5 at Py are found to be associated in 
remarkable manners with the edges of Green, the directrices of Wil-
czynski, and the projective normal of Fubini. In fact, a new geometric 
characterization is obtained for each of these lines. 

1. Tangeodesics. If the parametric net on a non-ruled surface 5 is 
the asymptotic net, the homogeneous projective coordinates yW(u, v) 
(i = l, 2, 3, 4) of a general point Py of 5 are solutions of a system of 
differential equations which may be assumed to be reduced to 
Wilczynski's canonical form 

(1.1) yuu + 2byv + f y = 0, yvv + 2a'y u + gy = 0. 

The homogeneous coordinates of points p, a on arbitrarily selected 
transversal surfaces 5pand S9oi the congruences of u- and z/-tangents 
of S are given by the vector forms 

(1.2) p = yu — 0y, <r = yv - ay, 

wherein /3, a are arbitrary analytic functions of u, v. 
Let / denote the line joining p, a and let / ' denote its reciprocal 

at Py. The line / ' joins the points Py and z where z is given by 

(1.3) z = yUv — ayu — Pyv 

in which /3 and a are the functions in (1.2). The line /, according to 

Green's classification, is a line of the first kind and generates a con-
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gruence T of the first kind as Py moves over 5. The line / ' is a line of 
the second kind and generates a congruence T' of the second kind as 
Py moves over S. 

Let C\ denote an integral curve of the curvilinear differential 
equation 

(1.4) do — \(u, v)du = 0. 

Regarding u as independent variable we write v'=\(u, v) and 
^ / /=Xw+XXt„ in which accents indicate differentiation with respect 
to u. 

The homogeneous coordinates of a general point of the ruled sur­
face Rl are represented by the vector form 

(1.5) y = yu+wy> 

wherein u and w are independent variables and v varies in accordance 
with the relation vr —\(u, v). 

Let us put u = u(t), w = w(i), so that y describes a curve on R% as / 
varies. The necessary and sufficient condition that this curve be an 
asymptotic curve of R% is that the determinant equation 

(1.6) (y, yu + v'yvy yw, d*y/dt*) = 0 

be satisfied. If we transform equation (1.6) by making use of equa­
tions (1.5), (1.4) and (1.1) we obtain, in view of the inequality 
(y, yuy yv, yUv)^0t the equation 

(1.7) dw/du^llP+ibu-lbwy+iw'+lb.+fW^la'bv^-bv'^/v^ 

As Py moves along C\ the point p moves in the direction defined by 
(1.7) if and only if w= — /3 satisfies (1.7). To obtain, therefore, the 
curvilinear differential equation for the p-tangeodesics we have merely 
to substitute — @ for w in (1.7) and clear of fractions. The result is 

(1.8) bv,/-2b2-(2bp+buy-(^+2bv+f+^uy
2+(2afb-pv)v^ = ^ 

The differential equation for the cr-tangeodesics may be obtained 
by making the substitution 

/ v" v' v b a' & f\ 

\ ~ v"/V» 1/V u a' b a g) 

in (1.8). The result, on simplifying, is 

(1.9) aV/+au-2afb+(a2+2a:+g+avy+(2afa+a:)vf2+2a,2vfz==0. 

2. Systems of hypergeodesics which have no cusp-axes. The 
curves defined on a surface 5 by a differential equation of the form 
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(2.1) v" = A + Bv' + Cv'2 + ZV3 

in which the coefficients are functions of u, v and accents indicate 
differentiation with respect to the independent variable u, are called 
hyper geodesies.1 The envelope of the osculating planes at a point Py of 
the hyper geodesies (2.1) is a cone which is ordinarily of the third class. 
When this cone is of the third class it has three distinct cusp-planes 
which intersect in a line called the cusp-axis of the cone, or the cusp-
axis of the hyper geodesies at the point Py. The cusp-axis is the line V 
for which a and /3 are given by 

(2.2) a = C/2, P = - B/2. 

We are interested here in those cases in which the class of the cone 
is less than three and the cone has no cusp-axis. The local equation 
of the osculating plane at Py of the curve C\ defined by (1.4) is 

(2.3) 2X(Xx2 - *3) + (V - 2b + 2a'\*)xt = 0, 

when referred to the tetrahedron whose vertices have the general 
coordinates y, yu, yv, yuv. Assuming C\ to be an integral curve of (2.1) 
we replace X' by the right member of (2.1) and put X in place of v'. 
The result is 

(2.4) 2X(Xtf2 - *3) + (A -2b + B\ + CX2 + [D + 2a']X3)#4 = 0. 

The union curves of a congruenceT' form a system of hypergeodesics, 
sometimes called an axial system, whose osculating planes at Py all 
pass through the line V of the congruence T''. Equation (2.1) repre­
sents such a system if A =2& and D = —2a'. 

A system of hypergeodesics (2.1) for which 

(2.5) A ^ 2b, D ^ - 2a' 

will be called, for reasons which appear later, a u-polar system; and 
a system (2.1) for which 

(2.6) D = - 2a', A ^ 2b 

will be called a v-polar system. 
If system (2.1) is a w-polar system, the equation for the envelope 

of its osculating planes at Py may be readily found from (2.4) to be 

(2.7) {2x2 + CxA)2 - 4(D + 2a')(Bx4 - 2x*)x4 = 0. 

Similarly, if (2.1) represents a fl-polar system the equation for the 
envelope of its osculating planes at Py may be found to be 

1 G. Fubini, Fondamenti delta geometria proiettivo-differenziale di una superficie, 
Atti Accad. Sci. Torino" vol. 53 (1918) p. 1034. 
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(2.8) (2xz - Bxt)2 - 4C4 - 2b){2x2 + Cx,)xé = 0. 

Since the cones (2.7) and (2.8) are nondegenerate quadric cones, 
they have no cusp-axes at Py. Hence we have that neither a u-polar 
system nor a v-polar system of hyper geodesies has a cusp-axis at Py. 

Thefe are two generators of the cone (2.7) which are such that the 
tangent planes of the cone along these generators pass through the 
w-tangent to S at Py. One of these is the z/-tangent to 5 at Pv and the 
other is the line / ' for which 

(2.9) a = C/2y fi = - B/2, 

wherein B and C are the functions appearing in (2.7). This line V will 
be called the u-edge of the u-polar system. 

The v-edge of a v-polar system is characterized similarly. 
Since equations (2.9) are of the same form as equations (2.2), we 

have immediately this theorem. 

THEOREM 2.1. If the coefficients B and C of the differential equation 
of a non-polar system of hyper geodesies are identical with the correspond­
ing coefficients of the differential equation of a u-polar system of hyper-
geodesicSy the cusp-axis of the non-polar system at Py coincides with the 
u-edge of the u-polar system at Py. 

A similar theorem applies, of course, to a z;-polar system of hyper-
geodesics. 

The forms of the differential equations (1.8) and (1.9) show clearly 
that the p- and (7-tangeodesics form u- and y-polar systems of hyper-
geodesics. For the system (1.8) we have 

A = 2by B = 2p + bjby C = (/32 + 2bv + ƒ + pu)/bt 

D = (pv - 2a'b)/b. 

For the system (1.9) we have 

A = (2a'b - au)/a', B = - (a2 + 2au' + g + av)/a', 

C = - 2 a - at/afy D = - 2a'. 

The cone (2.7) is associated with the system (1.8) of p-tangeodesics if 
Ay By Cy D are given by (2.10). Similarly, \î Ay By C, D are defined 
by (2.11), the cone (2.8) is associated with the system (1.9) of (r-tan-
geodesics. 

The u-edge of the p-tangeodesics (1.8) is the line // passing through 
the points Py and zh where Z\ is given by Z\ =yuv — <xiyu —^iyV) in which 

(2.12) ft = - 0 - bu/2by ax = (jS* + 2bv + ƒ + 0u)/2b. 
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The v-edge of the cr-tangeodesics is the line l{ passing through Py 

and z2 where z2 is given by z2=yuv—a2yu — /32yv, in which 

(2.13) fo = 0 2 + 2ai + g + av)/2a\ a2 = - a - a J/2a'. 

3. The edges of Green, the directrices of Wilczynski, and the 
projective normal. Let us apply the results of §§1 and 2 to obtain new 
characterizations of the edges of Green, the directrices of Wilczynski, 
and the projective normal of Fubini. The plane which is tangent to the 
cone (2.7) of the p-tangeodesics along the u-edge intersects the plane 
which is tangent to the cone (2.8) of the cr-tangeodesics along the 
v-edge in a line V of the second kind which will be called the joint-edge 
of the systems of p- and a-tangeodesics of S at Py. This line passes 
through the points Py and z where the general coordinates of z are 
given by z=yUv — ôryM~ fiyv, in which 

(3.1) 5 = - a - aj/2a', $ = - p - bu/2b. 

Since the functions a, ft associated with the edges of Green are given 
by 

(3.2) a = - av'/4a', 0 = - *«/4J, 

we have the following theorem. 

THEOREM 3.1. The second edge of Green at Py lies in the plane w 
determined by the joint-edge of the systems of p- and a-tangeodesics of S 
at Py and the reciprocal V of the line I joining p, a. The joint-edge 
coincides with the line V if and only if V is the second edge of Green. 
Any two particular planes TTI and TT2 of the plane w (corresponding to 
selections pi, <xi and p2l 0*2) intersect in the second edge of Green. 

Let aa denote the intersection of the tangent plane to Sp at p with 
the ^-tangent to 5 a t Py and let pa denote the intersection of the 
tangent plane to 5 , at cr with the ^-tangent to S at Py. I t may be 
easily verified that the general coordinates of pa and aa are given by 
Pa=yu— ^ayj Va^yv—OLay, wherein j30, aa are given by 

(3.3) /3a = - (g + av + <x*)/2a\ aa = - (ƒ + pu + p)/2b. 

The line la joining pa, aa was introduced by the author in a previous 
paper2 and called the asymptotic associate of the line I joining p, a. 

The plane determined by the v-tangent of S dit Py and the u-edge 
of the p-tangeodesics at Py is the polar plane of the u-tangent of S at 
Py with respect to the cone (2.7) of the p-tangeodesics. Similarly, the 

2 P. O. Bell, A study of curved surfaces by means of certain associated ruled surfaces, 
Trans. Amer. Math. Soc. vol. 46 (1939) p. 396. 
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plane determined by the w-tangent of S a t Py and the v-edge of the 
cr-tangeodesics at Py is the polar plane of the ^-tangent of S at Py 

with respect to the cone (2.8) of the a-tangeodesics. These two polar 
planes intersect in a line l( which will be called the polar-axis of the 
p- and a-tangeodesics at Py. This line may be shown to pass through 
the points Py and z% where the general coordinates of z% are given by 
«8= y**— oisyu— j3zyvi in which 

(3.4) az = - aa + bv/b, ft = — ft + aj/a'. 

Since the functions a, fi for the directrix / ' of Wilczynski are given 
by 

(3.5) a = bv/2b, 0 = aj/2a', 

equations (3.4) are such that we have, immediately, this theorem. 

THEOREM 3.2. The second directrix of Wilczynski lies in the plane 
p determined by the polar-axis of the p- and cr-tangeodesics at Py and the 
reciprocal la , with respect to Sat Py, of the asymptotic associate of I. Any 
two particular planes pi and p2 of the plane p (corresponding to lines 
h and Z2) intersect in the second directrix of Wilczynski. 

Theorems 3.1 and 3.2 may be dualized by replacing the lines 
and planes of these theorems by their reciprocals with respect to S at 
Py. The dual of Theorem 3.1 is the following theorem. 

THEOREM 3.3. The first edge of Green contains the point P of inter­
section of the reciprocal of the joint-edge of the systems of p- and cr-tangeo­
desics of S and the line I joining p, a. These three lines coincide if and 
only if the line I is the first edge of Green. Any two particular points 
Pi and Pi of the point P (corresponding to selections pi, <Ti and p2, o*2) 
determine the first edge of Green. 

The statement of the dual of Theorem 3.2 will be left to the care 
of the reader. 

Finally, since the projective-normal of S a t Py is the line for which the 
functions a, j8 are given b y a = —(bv/2b+av/2a')} 0 = —(aj2a'+bu/2b)1 

and the first directrix of S at Py is the line / for which a = bv/2b, 
P=a'u/2a', we have from equations (3.1) this theorem. 

THEOREM 3.4. If the line I joining p, <r is the first directrix of 
Wilczynski, the joint-edge of the systems of p and a-tangeodesics of SatPy 

is the projective normal of Fubini. 
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