NEW SYSTEMS OF HYPERGEODESICS DEFINED ON A SURFACE P. O. BELL Introduction. Let a non-ruled surface S be referred to its asymptotic net as parametric. As a point P_{ν} moves along a curve C_{λ} of S, the tangents at P_{ν} to the u- and v-asymptotic curves of S describe two ruled surfaces R_{λ}^{u} and R_{λ}^{v} , respectively. Let S_{ρ} and S_{σ} denote arbitrary transversal surfaces of the congruences of u- and v-tangents of S, respectively. The purpose of the present paper is to introduce and study systems of curves of S which will be called ρ - and σ -tangeodesics. DEFINITION. A curve C_{λ} of S whose associated ruled surface R_{λ}^{u} intersects the surface S_{ρ} in an asymptotic curve of R_{λ}^{u} is a ρ -tangeodesic of S. Similarly, a curve C_{λ} of S whose associated ruled surface R_{λ}^{u} intersects S_{σ} in an asymptotic curve of R_{λ}^{u} is a σ -tangeodesic of S. The ρ - and σ -tangeodesics of S at P_{v} are found to be associated in remarkable manners with the edges of Green, the directrices of Wilczynski, and the projective normal of Fubini. In fact, a new geometric characterization is obtained for each of these lines. 1. Tangeodesics. If the parametric net on a non-ruled surface S is the asymptotic net, the homogeneous projective coordinates $y^{(i)}(u, v)$ (i=1, 2, 3, 4) of a general point P_v of S are solutions of a system of differential equations which may be assumed to be reduced to Wilczynski's canonical form $$(1.1) y_{uu} + 2by_v + fy = 0, y_{vv} + 2a'y_u + gy = 0.$$ The homogeneous coordinates of points ρ , σ on arbitrarily selected transversal surfaces S_{ρ} and S_{σ} of the congruences of u- and v-tangents of S are given by the vector forms $$(1.2) \rho = y_u - \beta y, \sigma = y_v - \alpha y,$$ wherein β , α are arbitrary analytic functions of u, v. Let l denote the line joining ρ , σ and let l' denote its reciprocal at P_y . The line l' joins the points P_y and z where z is given by $$(1.3) z = y_{uv} - \alpha y_u - \beta y_v$$ in which β and α are the functions in (1.2). The line l, according to Green's classification, is a line of the first kind and generates a con- Received by the editors February 20, 1943. gruence Γ of the first kind as P_u moves over S. The line l' is a line of the second kind and generates a congruence Γ' of the second kind as P_u moves over S. Let C_{λ} denote an integral curve of the curvilinear differential equation $$(1.4) dv - \lambda(u, v)du = 0.$$ Regarding u as independent variable we write $v' = \lambda(u, v)$ and $v'' = \lambda_u + \lambda \lambda_v$, in which accents indicate differentiation with respect to u. The homogeneous coordinates of a general point of the ruled surface R^u_{λ} are represented by the vector form $$(1.5) \bar{y} = y_u + wy,$$ wherein u and w are independent variables and v varies in accordance with the relation $v' = \lambda(u, v)$. Let us put u = u(t), w = w(t), so that \bar{y} describes a curve on R^u_{λ} as t varies. The necessary and sufficient condition that this curve be an asymptotic curve of R^u_{λ} is that the determinant equation $$(1.6) \qquad (\bar{y}, \, \bar{y}_u + v'\bar{y}_v, \, \bar{y}_w, \, d^2\bar{y}/dt^2) = 0$$ be satisfied. If we transform equation (1.6) by making use of equations (1.5), (1.4) and (1.1) we obtain, in view of the inequality $(y, y_u, y_v, y_{uv}) \neq 0$, the equation $$(1.7) dw/du = \left\{ 2b^2 + (b_u - 2bw)v' + (w^2 + 2b_v + f)v'^2 - 2a'bv'^3 - bv'' \right\}/v'^2.$$ As P_{ν} moves along C_{λ} the point ρ moves in the direction defined by (1.7) if and only if $w = -\beta$ satisfies (1.7). To obtain, therefore, the curvilinear differential equation for the ρ -tangeodesics we have merely to substitute $-\beta$ for w in (1.7) and clear of fractions. The result is $$(1.8) \quad bv'' - 2b^2 - (2b\beta + b_u)v' - (\beta^2 + 2b_v + f + \beta_u)v'^2 + (2a'b - \beta_v)v'^3 = 0.$$ The differential equation for the σ -tangeodesics may be obtained by making the substitution $$\begin{pmatrix} v'' & v' & v & b & a' & \beta & f \\ -v''/v'^3 & 1/v' & u & a' & b & \alpha & g \end{pmatrix}$$ in (1.8). The result, on simplifying, is $$(1.9) \quad a'v'' + \alpha_u - 2a'b + (\alpha^2 + 2a_u' + g + \alpha_v)v' + (2a'\alpha + a_v')v'^2 + 2a'^2v'^3 = 0.$$ 2. Systems of hypergeodesics which have no cusp-axes. The curves defined on a surface S by a differential equation of the form $$(2.1) v'' = A + Bv' + Cv'^2 + Dv'^3$$ in which the coefficients are functions of u, v and accents indicate differentiation with respect to the independent variable u, are called hypergeodesics. The envelope of the osculating planes at a point P_v of the hypergeodesics (2.1) is a cone which is ordinarily of the third class. When this cone is of the third class it has three distinct cusp-planes which intersect in a line called the cusp-axis of the cone, or the cusp-axis of the hypergeodesics at the point P_v . The cusp-axis is the line l' for which α and β are given by $$(2.2) \alpha = C/2, \beta = -B/2.$$ We are interested here in those cases in which the class of the cone is less than three and the cone has no cusp-axis. The local equation of the osculating plane at P_y of the curve C_{λ} defined by (1.4) is $$(2.3) 2\lambda(\lambda x_2 - x_3) + (\lambda' - 2b + 2a'\lambda^3)x_4 = 0,$$ when referred to the tetrahedron whose vertices have the general coordinates y, y_u , y_v , y_{uv} . Assuming C_{λ} to be an integral curve of (2.1) we replace λ' by the right member of (2.1) and put λ in place of v'. The result is $$(2.4) \quad 2\lambda(\lambda x_2 - x_3) + (A - 2b + B\lambda + C\lambda^2 + [D + 2a']\lambda^3)x_4 = 0.$$ The union curves of a congruence Γ' form a system of hypergeodesics, sometimes called an axial system, whose osculating planes at P_v all pass through the line l' of the congruence Γ' . Equation (2.1) represents such a system if A=2b and D=-2a'. A system of hypergeodesics (2.1) for which $$(2.5) A = 2b, D \neq -2a'$$ will be called, for reasons which appear later, a *u-polar system*; and a system (2.1) for which $$(2.6) D = -2a', A \neq 2b$$ will be called a v-polar system. If system (2.1) is a *u*-polar system, the equation for the envelope of its osculating planes at P_y may be readily found from (2.4) to be $$(2.7) (2x_2 + Cx_4)^2 - 4(D + 2a')(Bx_4 - 2x_3)x_4 = 0.$$ Similarly, if (2.1) represents a v-polar system the equation for the envelope of its osculating planes at P_u may be found to be ¹ G. Fubini, Fondamenti della geometria proiettivo-differenziale di una superficie, Atti Accad. Sci. Torino vol. 53 (1918) p. 1034. $$(2.8) (2x_3 - Bx_4)^2 - 4(A - 2b)(2x_2 + Cx_4)x_4 = 0.$$ Since the cones (2.7) and (2.8) are nondegenerate quadric cones, they have no cusp-axes at P_{ν} . Hence we have that neither a u-polar system nor a v-polar system of hypergeodesics has a cusp-axis at P_{ν} . There are two generators of the cone (2.7) which are such that the tangent planes of the cone along these generators pass through the u-tangent to S at P_v . One of these is the v-tangent to S at P_v and the other is the line l' for which $$(2.9) \alpha = C/2, \beta = -B/2,$$ wherein B and C are the functions appearing in (2.7). This line l' will be called the u-edge of the u-polar system. The v-edge of a v-polar system is characterized similarly. Since equations (2.9) are of the same form as equations (2.2), we have immediately this theorem. THEOREM 2.1. If the coefficients B and C of the differential equation of a non-polar system of hypergeodesics are identical with the corresponding coefficients of the differential equation of a u-polar system of hypergeodesics, the cusp-axis of the non-polar system at P_v coincides with the u-edge of the u-polar system at P_v . A similar theorem applies, of course, to a v-polar system of hypergeodesics. The forms of the differential equations (1.8) and (1.9) show clearly that the ρ - and σ -tangeodesics form u- and v-polar systems of hypergeodesics. For the system (1.8) we have (2.10) $$A = 2b$$, $B = 2\beta + b_u/b$, $C = (\beta^2 + 2b_v + f + \beta_u)/b$, $D = (\beta_v - 2a'b)/b$. For the system (1.9) we have (2.11) $$A = (2a'b - \alpha_u)/a', \quad B = -(\alpha^2 + 2a_u' + g + \alpha_v)/a',$$ $$C = -2\alpha - a_v'/a', \quad D = -2a'.$$ The cone (2.7) is associated with the system (1.8) of ρ -tangeodesics if A, B, C, D are given by (2.10). Similarly, if A, B, C, D are defined by (2.11), the cone (2.8) is associated with the system (1.9) of σ -tangeodesics. The *u*-edge of the ρ -tangeodesics (1.8) is the line l_1' passing through the points P_u and z_1 , where z_1 is given by $z_1 = y_{uv} - \alpha_1 y_u - \beta_1 y_v$, in which $$(2.12) \beta_1 = -\beta - b_u/2b, \alpha_1 = (\beta^2 + 2b_v + f + \beta_u)/2b.$$ The v-edge of the σ -tangeodesics is the line l_2' passing through P_y and z_2 where z_2 is given by $z_2 = y_{uv} - \alpha_2 y_u - \beta_2 y_v$, in which (2.13) $$\beta_2 = (\alpha^2 + 2a_u' + g + \alpha_v)/2a', \quad \alpha_2 = -\alpha - a_v'/2a'.$$ 3. The edges of Green, the directrices of Wilczynski, and the projective normal. Let us apply the results of §§1 and 2 to obtain new characterizations of the edges of Green, the directrices of Wilczynski, and the projective normal of Fubini. The plane which is tangent to the cone (2.7) of the ρ -tangeodesics along the u-edge intersects the plane which is tangent to the cone (2.8) of the σ -tangeodesics along the v-edge in a line \bar{l}' of the second kind which will be called the joint-edge of the systems of ρ - and σ -tangeodesics of S at P_y . This line passes through the points P_y and \bar{z} where the general coordinates of \bar{z} are given by $\bar{z} = y_{uv} - \bar{\alpha}y_u - \bar{\beta}y_v$, in which $$(3.1) \bar{\alpha} = -\alpha - a_v'/2a', \bar{\beta} = -\beta - b_u/2b.$$ Since the functions α , β associated with the edges of Green are given by (3.2) $$\alpha = -a_v'/4a', \quad \beta = -b_u/4b,$$ we have the following theorem. THEOREM 3.1. The second edge of Green at P_v lies in the plane π determined by the joint-edge of the systems of ρ - and σ -tangeodesics of S at P_v and the reciprocal l' of the line l joining ρ , σ . The joint-edge coincides with the line l' if and only if l' is the second edge of Green. Any two particular planes π_1 and π_2 of the plane π (corresponding to selections ρ_1 , σ_1 and ρ_2 , σ_2) intersect in the second edge of Green. Let σ_a denote the intersection of the tangent plane to S_ρ at ρ with the v-tangent to S at P_v and let ρ_a denote the intersection of the tangent plane to S_σ at σ with the u-tangent to S at P_v . It may be easily verified that the general coordinates of ρ_a and σ_a are given by $\rho_a = y_v - \beta_a y$, $\sigma_a = y_v - \alpha_a y$, wherein β_a , α_a are given by (3.3) $$\beta_a = -(g + \alpha_v + \alpha^2)/2a', \quad \alpha_a = -(f + \beta_u + \beta^2)/2b.$$ The line l_a joining ρ_a , σ_a was introduced by the author in a previous paper² and called the asymptotic associate of the line l joining ρ , σ . The plane determined by the v-tangent of S at P_v and the u-edge of the ρ -tangeodesics at P_v is the polar plane of the u-tangent of S at P_v with respect to the cone (2.7) of the ρ -tangeodesics. Similarly, the ² P. O. Bell, A study of curved surfaces by means of certain associated ruled surfaces, Trans. Amer. Math. Soc. vol. 46 (1939) p. 396. 580 P. O. BELL plane determined by the *u*-tangent of S at P_v and the *v*-edge of the σ -tangeodesics at P_v is the polar plane of the *v*-tangent of S at P_v with respect to the cone (2.8) of the σ -tangeodesics. These two polar planes intersect in a line l_3' which will be called the *polar-axis* of the ρ - and σ -tangeodesics at P_v . This line may be shown to pass through the points P_v and z_3 where the general coordinates of z_3 are given by $z_3 = y_{uv} - \alpha_3 y_u - \beta_3 y_v$, in which (3.4) $$\alpha_3 = -\alpha_a + b_v/b, \quad \beta_3 = -\beta_a + a_u'/a'.$$ Since the functions α , β for the directrix l' of Wilczynski are given by $$(3.5) \alpha = b_v/2b, \beta = a_u'/2a',$$ equations (3.4) are such that we have, immediately, this theorem. THEOREM 3.2. The second directrix of Wilczynski lies in the plane p determined by the polar-axis of the p- and σ -tangeodesics at P_u and the reciprocal l_u' , with respect to S at P_u , of the asymptotic associate of l. Any two particular planes p_1 and p_2 of the plane p (corresponding to lines l_1 and l_2) intersect in the second directrix of Wilczynski. Theorems 3.1 and 3.2 may be dualized by replacing the lines and planes of these theorems by their reciprocals with respect to S at P_y . The dual of Theorem 3.1 is the following theorem. THEOREM 3.3. The first edge of Green contains the point P of intersection of the reciprocal of the joint-edge of the systems of ρ - and σ -tangeodesics of S and the line l joining ρ , σ . These three lines coincide if and only if the line l is the first edge of Green. Any two particular points P_1 and P_2 of the point P (corresponding to selections ρ_1 , σ_1 and ρ_2 , σ_2) determine the first edge of Green. The statement of the dual of Theorem 3.2 will be left to the care of the reader. Finally, since the *projective-normal* of S at P_v is the line for which the functions α , β are given by $\alpha = -(b_v/2b + a_v'/2a')$, $\beta = -(a_u'/2a' + b_u/2b)$, and the first directrix of S at P_v is the line l for which $\alpha = b_v/2b$, $\beta = a_u'/2a'$, we have from equations (3.1) this theorem. THEOREM 3.4. If the line l joining ρ , σ is the first directrix of Wilczynski, the joint-edge of the systems of ρ and σ -tangeodesics of S at P_y is the projective normal of Fubini. University of Kansas