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Let us consider the classical theorem of mean value, which states 
that 

(1) U(Q = f U(x)dx 
o — a J a 

or 

(1') F'(0 = — * - [F(b) - F(a)\ 
o — a 

can be satisfied by at least one value of £ inside1 the interval (a, b). 
In the general case we can add no further precision concerning the 

position of the value £ inside the interval (a, b). But if we consider 
only functions U(x) belonging to a definite class of functions, we can, 
sometimes, give a more precise determination for this value £. We 
can, in particular, for some classes of functions, determine intervals 
(a', &')> concentric to (a, 6), with 

(2) V - a' = 6(b - a ) , 0 g S S l, 

and such that (1) holds for a t least one value £ inside (ar, &')> f ° r 

every function U(x) belonging to the class considered and for every 
interval (a, b) for which the classical mean value theorem holds. 
The smallest number 6 which has the above mentioned property for a 
given class of functions is called its "contraction factor." I t results 
from this definition that the value of the contraction factor depends 
only on the class of functions considered and is independent of all 
other factors, such as the interval (a, &), and so on. 

If we replace the equation (1) by (1/) and repeat the foregoing 
literally, we define in exactly the same way the contraction factors 
for classes of functions F(x). 

The existence of a contraction factor for certain classes of func­
tions, particularly for polynomials of a real variable, has been proved 
by Paul Montel.2 The value of 0 as a function of the degree n of the 
polynomials considered was found independently and almost at the 

Received by the editors September 18, 1942. 
1 The expression "inside" in this paper means: within or at the ends. 
2 P. Montel, Bull. Soc. Math. France vol. 58 (1930) pp. 105-126. See also D. 

Pompeiu, Annales Scientifiques de l'Université de Jassy vol. 15 (1929) p. 335. 
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same time by Tchakaloff3 and Biernacki.4 Their results have been 
generalized since by many authors, among whom we quote Favard,5 

Anghelutza,6 H. L. Krall7 and Cioranescu,8 whose paper is particu­
larly important for us. 

Let U(yi, 3>2, • • • , yv) be an analytical function of v independent 
variables, polyharmonical of the order 2m and of mean value zero 
within the hypersphere 2„ of its j>-dimensional space. Therefore 

(3) A<2^£/ = 0, 

(4) f Udr = 0, 

where A(2m) is the operator of Laplace applied successively 2m times 
and the integral is extended over the inside of the hypersphere 2„ of 
volume element dr. 

We consider now the system of 2m equations with the 2m un­
knowns ki, X{\ 

w o V 
(5) ] £ lux? = ———, q = 0, 1, 2, • • • , 2m - 1, 

<-i v + 2q 

and let XM be the largest of the solutions Xi of this system. N. Cio­
ranescu proved in his above mentioned paper that XM is the contrac­
tion factor of U(yi> yz> • • • , yv) if: 

(a) all Xi are real and inside ( — 1 , + 1 ) ; 
(b) all ki are positive. 

We remember that this statement means: If (3), (4), (a) and (b) are 
satisfied and R is the radius of 2„, there is at least one point P 0 inside 
the hypersphere of radius XMR which makes U(P0) = 0. 

From Cioranescu's demonstration it follows also that if (a) and (b) 
are satisfied, but the order of U is odd, so that 

(30 At*n+»U = 0, 

(40 f Udr = 0, 

3 L. Tchakaloff, C. R. Acad. Sci. Paris vol. 192 (1931) p. 32. 
4 M. Biernacki, Bulletin de Mathématiques et de Physique, pures et appliquées 

de l'École Polytechnique de Bucarest, II Année, no. 3, pp. 164-168. 
s M Favard, C. R. Acad. Sci. Paris vol. 192 (1931) p. 716. 
6 T. Anghelutza, Mathematica, Cluj vol. 6 (1932) p. 140. 
7 H. L. Krall, On the mean value theorem, Amer. Math. Monthly vol. 42 (1935) 

pp. 604-606. 
8 N. Cioranescu, Quelques propriétés • • • , Mathematica, Cluj vol. 9 (1935) pp. 

184-193. 
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the contraction factor is the highest of the values x*, which are solu­
tions of the system9 of 2m + 2 equations with 2m + 2 unknowns Xi, k%: 

v 1 y 2q - v 

/ j K\Xi '— (50 £T v + 2q 

xm+i = 0, q = 0, 1, 2, • • • , 2m. 

Here below we shall prove that the conditions (a) and (b) are 
always satisfied, we shall find the values of the contraction factors 
connected with the zeros of a sequence of Jacobi (more generally of 
Tchebycheff) polynomials, and shall see that our results are a general­
ization of Tchakaloff's and Biernacki's theorems. 

Let10 us put x\~Ui (i — ly 2, • • • , m). We observe that the second 
member of (5) can be written : 

(6) 
v + 2q 

= f vuv+2«-ldu = f (v/2)u(v,2)-lu*du. 
J o J o 

These are for # = 0, 1, 2, • • • , 2m — 1 the first m moments of the 
function 

f(x) = (1/2) f vuM^du; 
Jo 

therefore, we can write (5) as: 

m s* l 

(7) 22 kiUQ{ = I udyf/iu), q = 0, 1, 2, • • • , 2m — 1. 
i=l J 0 

We observe that \f/(x) is monotonically increasing in (0, 1); to such 
yp(x) correspond, as is well known,11 a sequence [<j>m{v] x)} of ortho-
normal12 polynomials, which, in turn, give rise to a mechanical quad­
rature formula:11 

(8) ƒ» 1 m 

G2m-i(u)d\l/(u) = X HlG2m-i(li) 
0 t = l where G2m-i(x) represents an arbitrary polynomial of degree at most 

2m — 1, the abscissas U are the zeros of </>m(v; x), all real, distinct and 

9 This system is given by Cioranescu in his above mentioned paper for tn<>2. 
10 I am indebted for this interesting method to Professor J. A. Shohat, whose 

demonstration I follow very closely. 
11 J. A. Shohat, Théorie générale des polynômes orthogonaux de Tchebycheff, Mém­

orial des Sciences Mathématique, fascicule 66, pp. 8, 15. 
12 In this case they are Jacobi polynomials and coincide, for v — 2, with Legendre's 

polynomials. 
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inside (O, 1), and the coefficients Hi are all positive. I t follows, for 
G2m-i(u)=uq, 

m /» 1 

(9) 53 Hiï = I w*#0), q = 0, 1, 2, • • • , 2m - 1. 
• - 1 J o 

Comparing (7) with (9) we see that a solution of (7) is given by 

(10) Ui = h, h = Hif 

with 0 < / t < l , Hi>0, and, returning to (5): 

(11) Xi = ± (Z*)1/2, ki = Hu i = 1, 2, 3, • • • , m. 

Similar considerations on the m equations 2 to m + \ of (5') (putting 
for instance ki%l=kl) led also to m values Xi=lj (i = l, 2, • • • , m) 
to which we have only to add #m+i = 0, in order to have the complete 
set. 

We may remark that if in A (n )?7=0, n = 2tn, the moments of yj/(x) 
are ap = v/(v + 2p) and the corresponding Jacobi polynomials form a 
complete sequence ; if n = 2m — 1, the moments are ap = v/(v + 2(p +1)) 
and the corresponding Jacobi polynomials form another complete 
sequence. 

I t follows that the systems (5) and (5') have solutions, where all 
Xi are real and in absolute value less than one, and all ki are positive; 
therefore, the conditions of Cioranescu are always satisfied.13 

We could find the Xi also solving (5) by the method of Sylvester,14 

which, however, requires lengthy considerations of determinants. Its 
result is that the solutions Xi of (5), are the zeros of the polynomial: 

E2m(v) x) 

x2 1 _ I 

v+2(m-l) p+2m 

x* 1 

v+2tn i>+2(tn+l) 

x2 1 

H - 2 ( m - l ) p+2tn v-\-2m H - 2 ( w + l ) " ' H-2 (2m-2) H - 2 ( 2 m - l ) I 

13 The present method has many points in common with that of J. A. Shohat, 
On a certain formula of mechanical quadratures with non-equidistant ordinates, Trans 
Amer. Math. Soc. vol. 31 (1929) pp. 449-450. 

14 For Sylvester's method see for instance T. Muir, Theory of determinants, vol. 
I I , pp. 332-335. I t may be noted that the formula (in Sylvester's notation): 
an+i— a„2^Xi+a„r_i^XiX2— • • • = 0 , which we meet there, generalizes an analogous 
equation indicated by P. Montel in his quoted paper. 

(12) 

X2 1 

v p+2 

X2 1 

p+2 ~" H-4 

x2 1 

P+2 P+4: 

X2 1 

p+4 p+6 
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Similarly, the solutions of (5') are the zeros of 

(12') 

%2ti 

X 

H-lfa *) 
X2 1 

V+2 V+4: 

X2 1 

A;2 1 

x2 1 
p+4 i>+6 
x2 1 

H-6 y+8 

tf2 1 

1 

v+2m v-\-2(m+l) 

x2 1 

v+2(m+l) v+2(tn+2) 

1 

*>+2m p+2(tn+l) * + 2 ( w + l ) y+2(w+2) y + 2 ( 2 w - l ) *>+4m 

These formulae have already been found for ^ = 1 by Biernacki.15 

We can thus make the general statement: 
If the analytical function U(P) of v independent variables 

J h yz> ' ' • » Jv satisfies the conditions A ( n )£/=0 and f^vUdr = Oi there 
is inside the hypersphere of radius XMR at least one point PQ which 
makes U(Po)=0, R being the radius of 2„ and XM<1 the square root 
of the highest zero of the Jacobi polynomial1* <t>m{v\ x), where m — n/2 
or m = (n — l)/2, according to the parity of n; the same value XM is also 
the highest zero of the polynomial17 En(v; x). 

Taking into account the formulae of TchebychefFs polynomials:18 

(13) $»(*) — 
A»W 

<*o 

a\ 

an-\ 

1 

Oil 

a2 

an 

X 

an 

« 2 n - l 

Xn 

— X d W | M _ i # "J" Ontn—2% 

with 

(14) A.W = 

« 0 

Oil 

« n - 1 

« 1 

« 2 

Oin 

an-i 

an 

«2n-2 

and the formulae of Szegö:19 

15 M. Biernacki, loc. cit. p. 166. 
16 We can write immediately <t>m(v; x), knowing the moments of \f/(x). 
17 As we shall see, the polynomials En(v\ x) form a single sequence of Tchebycheff 

polynomials, without distinction as to whether n is even or odd. 
18 J. A. Shohat, loc. cit. pp. 3-5. 
19 G. Szegö, Tiber orthogonale Polynôme, die zu einer gegebenen Kurve der komplexen 

Ebene gehören, Math. Zeit. vol. 9 (1921) p. 218. 



546 E. G. GARNEA [August 

(15) à2m(lp)$2m(x) 

(15') A2m+lty)®2m+l(x) 

we find easily: 

«o 0 

0 «2 • 

«2 0 

• • 
0 CK2m 

1 X 

a0 0 

0 «2 

a2 0 

a2m 0 

1 * 

' «2w 

0 

' Ö?2m+2 

• 0 
/y.2m 

« 2 m + 2 

0 

+ aoX 
— «2 

-— azX 

+ «2m-2^ 

— «2m 

+ &0X 

— «2 

+ «2^ 

— a2m 

+ «2m# 

~ «2 * * 

+ «2# ' ' 

+ «4 * • 

~ a2m * • 

+ a.2njx ' • 

— «2 

+ a2X • • 

— «4 

+ «2m# • • 

— «2m+2 * * 

— «2m 

+ a2mX 

+ <*2m+2 

— a4m_2 

+ Û!4w-2# 

+ a2mx 
— «2m+2 

+ a2m+2X 

• — ÛT4 T O 

+ «4m# 

A 2 m ( ^ ) * 2 m ( * ) 

(16) 

«o 0 

0 a2 

a2 0 

0 «2w 

! 1 « 

• • a2m 

•• 0 

• • «2W+2 

. . . o 
. . 4*2m 

— C2m+1 

«0# — «2 

«2#2 ~ «4 

«2# — ai • • • «2m-2^ "~ «2m 

« 4 # 2 — «c * * * «2/w^2 — «2m+2 

«2m-2# 2 — a2m a2mX2 — «2m+2 * * • a4w-4^ 2 — «4»»-2 

A2m+l(*p)$2m+l(x) = 

(16') 

«o O 
0 a2 

a2 O 

a2m O 

1 « 

«2W+2 

O 

— \s2m+2X 

«2# ~~ «4 

«4#2 — «6 

«4ff' ~ «6 

' «2m+2 a2m+2X' ~ Of2m+4 * * * «4m-2^ — «4m 

«2mff2 — «2w+2 

:»-< 

where 

(17) ( • 2 m — 

« 0 « 2 ' 

« 2 « 4 ' 

<*2m-2 a2m * 

' ' « 2 m - 2 

' * Oi2m 

' ' OL^rn— 4 
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(17) Cïm+i — 
« 4 « 6 • * * «2m+2 

<*2m <*2m+2 * * * « 4 m - 2 

Equating in (16) the coefficients of x2m, and in (16') the coefficients 
of x2m+1, we obtain,20 taking into account (13): 

^2mWJ = C,2mC,2m+l 

and 

or generally 

(18) 

Let us put now 

(19) dim 

A2m+lW0 = C,2w+lC,2m+2 

Aw(^) = CnCn+1. 

1 
= ;—~—f « 2 w + i = 0 

v + 2m 

Then the Cw, easily calculable, being all positive, (18) shows that 
A n ( ^ ) > 0 . Therefore, the conditions of Hamburger21 being satisfied, 
there is a monotonically increasing function >F(#)22, whose moments 
are (19). Comparing (12), (12') with (16), (16'), we see that the 
polynomials En(v\ x) are just the sequence of polynomials of Tche-
bycheff corresponding to ^(x). As they form a sequence of Sturm23 

and as En(v; 1) > 0 , E2m(v; 0) =(-l)™C2 w+i, limxs0 (l/x)E2m+i(v; x) 
= ( — \)mD2my with D2m an easily calculable positive determinant, we 
find also in this way that all the Xi, zeros of En(v\ x) are real, distinct 
and inside ( - 1 , +1) . 2 4 

The function U, polyharmonical of order n, can be in particular a 
polynomial of degree 2n — 1, of v independent variables. If a poly­
nomial is of an even degree, it may be considered for our purpose as 

20 I have learned that the same formulae have been derived by C. Rees in his 
thesis on Elliptic orthogonal polynomials, 

21 H. Hamburger, TJber eine Erweiterung des Stieltjeschen Momenienproblems, 
Math. Ann. vol. 81 (1920) pp. 235-319; vol. 82 (1921) pp. 120-164 and pp. 168-187. 

22 Taking into account the further conditions of the problem, we easily find this 
function, which is: d*(x)= (1/2)| *| v~ldx for | x\ ^ 1, d*(x) = 0 for | x\ > 1 . 

23 See also Brioschi, Théorie des determinants, pp. 85-86. 
24 By solving completely the system (5) it can be proved also that &i>0, but this 

requires a very long calculation, whereas the ingenious method of J. A. Shohat yields 
immediately the result. Some rather complicated expressions of the k% in function 
of v are given, for small values of n, in the quoted paper of N. Cioranescu in Mathe­
matica, Cluj vol. 9 (1935) pp. 191-192. 
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of the next higher odd degree, with its first coefficient equal to zero.25 

For p = l we fall back on the known theorems of P. Montel, 
Tchakaloff26 and Biernacki.27 In fact, the formulae (12), (12'), with 
(16), (160 and (19) show us 28 that for v = l, £ n ( l ; x) are but the 
polynomials Pn{x) of Legendre; moreover: 

(3") A ( n ) C 7 ( : y ) = = _ ^ Z = o 
dy2n 

if the degree of U is at most 2w — 1 . Applying our results from above 
to this case we find that if XM is the highest zero of Legendre's poly­
nomial Pn(x) and 

(4") fbU(y)dy = 0 

where U(y) is a polynomial of degree at most 2n — 1, then U{y) has 
at least one zero inside the interval (1/2)(b+a) ±XM(b—a)/2. These 
are precisely the results of Tchakaloff and Biernacki and our main 
statement from p. 545 can be considered as a generalization of the 
precisions which the above mentioned authors have brought to the 
mean value theorem. 

HAVANA, C U B A 

25 This has been shown for v = 1 by P. Montel in his quoted paper. A slight 
difference can be noted between his statement and ours, because P. Montel's refers 
not to the function U(y), but to F{y)^J^JJ{y)dy. 

26 Tchakaloff, loc. cit, p. 34. 
27 Biernacki, loc. cit. p. 167-168. 
28 We may remark that the formulae (13), (13'), (16) and (16') attest the equiva­

lence of the solutions found by the two authors in the problem of the contraction 
factor, in spite of their different form. 


