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1. Introduction. Consider a finite complex K and a group of permu­
tations of n elements G= {G\}, A = l, • • • , N. To define the product 
kn of K with respect to G, n = 2, 3, • • • , we consider an ordered set of 
n complexes K\, • • • , Kn each homeomorphic to K; here as through­
out the paper we do not distinguish between a complex and a geo­
metric realization of the complex. A point p of the topological product 
Kn=KiX • • • XKn can be represented by the sequence of points 
pi, ' • • > Pn, pi&Ki. Each function G\(p), X = l, • • • , N, gives a 
homeomorphism of Kn upon itself. We identify each point pÇî.Kn 

with all its transforms G\(p), X = 1, • • • , N. The resulting continuous 
image of Kn is kn. If G is the symmetric group or the cyclic group of 
permutations of n elements, the product kn is called the n-fold sym­
metric product or the n-fold cyclic product of i t , respectively. 

In this paper we study the integral cohomology groups of kn. Our 
Theorem 1 gives a convenient method for calculating these groups 
when G is given. The method is used to construct the cohomology 
groups when G is either symmetric or cyclic. 

The method of this paper differs from that of the earlier papers 
[3 ] and [5 ] of the references at the end of this paper in the following 
way. All treatments consider Richardson's simplicial transformation 
A of Kn upon kn. But Richardson and Walker use A to determine a 
transformation of cycles of Kn into cycles of kn

y while this paper 
considers the natural transformation of cocycles of kn into cocycles 
of Kn. The earlier correspondence of cycles is not (1-1), but the 
present correspondence of cocycles is (1-1). This fact enables us to 
get new results. 

2. The general theorem. By definition kn is obtained by identifying 
points of Kn. This identification gives a continuous transformation 
A of Kn upon kn. Richardson has shown1 that Kn and kn can be sub­
divided into simplicial complexes and the simplexes of these com­
plexes so oriented that A is simplicial, G\ is simplicial, X = l, • • • , N, 
and for any oriented simplex x of Kn 

(1) A* = AGxx, X = 1, • • • , N. 
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iSee [3, §5]. 
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Henceforth Kn and kn shall denote these subdivisions. 
We say that a chain F of Kn is invariant under G if F(x) = F(G\x), 

X = 1, • • • , N, for all simplexes x of Kn with the same dimension as F. 
Let ƒ be a chain of kn> and let erf be the chain of Kn defined by 

*ƒ(#) =/(A#). 

THEOREM 1. rAe transformation a gives a (1-1) correspondence be­
tween the cocycles of kn and the cocycles of Kn invariant under G, and a 
cocycle of kn cobounds if and only if its corresponding invariant cocycle 
of Kn cobounds an invariant chain.2 

PROOF. T O show that af is invariant we have using (1) that 
af(x) =f(Ax) =f(AGxx) =af(Gxx). 

Next we show that any invariant chain F can be written <rf. Indeed, 
because of (1) and the fact that F is invariant we can define a chain ƒ 
of kn by the equation f (Ax) = F(x). Then <rf(x) =f(Ax) = F(x). 

Since AKn covers kn, it follows that a is (1-1) between chains of 
kn and invariant chains of Kn. To complete the proof of Theorem 1 it 
is sufficient to show that f' = z implies (o/)' — az, and conversely; the 
dot denotes the coboundary operator. I t is well known that ƒ — z im­
plies (<rf) ' = az.z Suppose (af) ' = az. Then z(Ax) = <rz(x) = (vf) ' (x) 
= af(x)=f(Ax). 

3. The topological product Kn. In this section we state some prop­
erties of Kn which can be derived when n > 2 in the same way that 
they have been derived when n = 2.A Let 

(2) Zh zh ƒƒ, i = 1, • • • , / , j = 1, • • • , J, 

form a basis for the integral chains of Kn of all dimensions; further­
more, let (2) be such that the Z» generate the cocycles that are inde­
pendent of coboundaries, the Zi and Zj generate the cocycles, and 

(3) fj = efh j = 1, • • • , / , 

are a complete set of coboundary relations for the cocycles of (2).5 

Corresponding to any set of non-negative integers a,\, • • • , aj , 
bu • • • , bj, cu - • • , Cj with X ) a » + S ^ + S c J = w w e n a v e a c n a m 

A =A(ai, • • - , ai, &i, • • • , bj, cu • • • , cj) defined as follows. Let 

\x) Xij ' * * , Xn 

2 This theorem resembles [4, p. 22, line 15]. 
3 See, for example, [2, chap. IV, §4], 
4 See, for example, [2] or [ l ] , 
6 See [I, p. 304, §7], which includes a justification of the (1-1)-correspondence 

between the z's and ƒ s of (2). 
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be the sequence of elements of (2) with Z\ in the first a,\ places, Z2 in 
the next a2 places, Z\ in the b\ places following the ai elements equal 
to Zi,fx in the d places following the bj elements equal to Zj, and so on. 
Then A ~(xiX • • • Xxn). If we denote the dimensions of Zi and z3-
by Yi and s3, respectively, we see from (3) that the dimension of ƒ,-
is Sj — 1. Hence the dimension of A is y^airi+y^bjSt+y)c<i(s<i~-l). 

Let 5 = {S\}> X = l, • • • , n\, be the symmetric group of permuta­
tions on n elements. We can apply Sx to the sequence (4) and obtain 
the sequence which we denote by yi, • • • , yn. We define 5\{^4} 
= (3/iX • • • Xyn). Then a basis for the chains of Kn is given by the 
distinct chains of the set S\{A }, X = l, • • • , n\, all A. 

To obtain a basis for the cocycles of all dimensions we con­
sider «3i=c8i(ait • • • , ai, fa, • • • , bj) =A(au • • • , &i, fay • • • , bj), 
X X ' + 2 ^ ' = ^- Also we consider £2 = À/e, X X - > 1 , where e is the 
greatest common divisor of all the e/s that are associated by (3) with 
the f/s that correspond to the nonzero c/s of A ; the division of A 
by e can be shown to be always possible. Then a basis for the cocycles 
of Kn is given by the distinct chains of the set Sx{,3i} a n d •SxjcB?}-
X = l, • • • , n\, all $1 and $2. 

4. The integral cohomology groups of the w-fold symmetric prod­
uct. We can consider the group S as the group G of §§1 and 2. Then 
any 5\ determines a simplicial map of Kn into itself. Under this 
simplicial map the chain A is mapped into a chain which we denote 
by SxA. From [3] we obtain the formula 

(5) SXA = ( - iySx{A} 

where d is determined as follows. If S\ interchanges two elements 
and leaves the other n — 2 invariant, then d is the product of the 
dimensions of the two elements of (4) that are interchanged by S\. 
Since any 5\ is a product of permutations of the type just considered, 
the rule just stated determines d for any S\. 

We next determine the chains of Kn that are invariant under S. 
First consider an A with at least one of its ai} bjf or c,- having the 
properties that it is greater than one and that the Z», z3, or/y with 
which it is associated is of odd dimension. Then (5) implies that there 
is an S\such thatSx-4 = —A. This implies that any cocycle invariant 
under S is linearly independent of A and indeed of S\A, X = 1, • • • , nl. 

Next assume that no af-, bj, or c,- of A has the properties just con­
sidered. Then there are 7r=ai!a2! • • • W • • • Ci! • • • values of X for 
which S\A =A. From this fact and the fact that the 5x̂ 4 are elements 
of a basis (because of (5) and the fact that the S\{A } form a basis), 
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we see that T A 5 \ ^ 4 , X = 1, • • • , n\, is divisible by IT but by no integer 
greater than 7r. Finally, we infer that a basis for the chains of Kn in­
variant under S is given by the distinct chains of the set (X/TT)^\S\A, 
X = 1, • • • , n\, where A ranges over all A any of whose factors Zi, Zj, 
and fj is of even dimension if the corresponding a,-, bj, or Cj is greater 
than 1. 

In the same way we deduce from the facts of §3 that a basis for the 
cocycles invariant under S is given as stated in Theorem 2 below. 

We next find the coboundaries of chains invariant under 5 that 
are linearly dependent on (1/TT)Y^\S\£I. Suppose for ^ I w e have 
#17^0. Then £i is a product of n cocycles at least one of which is z\. 
Replace the first %\ in this product by f\, f\ — e\Z\. Let D denote the 
resulting chain. Then D' = (bi/irJ5^\S\Di X = 1, • • • , n\, is invariant 
under S and is not a proper multiple of any other invariant chain. 
Since (xiX-- - Xxn)' =53* ± (*iX • • • X±iX-- - Xxn)> i = l,- • • , n* 
and since (S\F)' =S\F, we have t>' ~ ± (biei/7r)^2\S\£i. This implies 
that (biei, • • • , bjej)(l/irj^2\S\£x cobounds a chain invariant under 
S; here as elsewhere we understand that the greatest common divisor 
of zero and a positive integer is that integer. Furthermore, examina­
tion of our basis for the chains invariant under S shows that multiples 
of this coboundary are the only multiples of 3 i that c a n D e linearly 
dependent upon a coboundary of a chain invariant under 5. 

The definition of ^2 implies that (e/ir)^J\Sx£2, X = l, • • • , n\, co-
bounds a chain invariant under S, Furthermore, multiples of this 
coboundary are the only multiples of (l/7r)X)x-S'xc32 that are depend­
ent on coboundaries of chains invariant under S. We have proved 
this theorem. 

THEOREM 2. A basis f or the cocycles of Kn invariant under S is given 
by the distinct chains of the set ( I / T O ^ X S A ^ I and ( I / T O ^ X S X ^ , 

X = 1, • • • , n\, where 3 i and £2 range over all 3 i and £2 any of whose 
factors Zi, Zj, and fj has even dimension if the associated ai, bj, or Cj is 
greater than 1 ; furthermore, the cocycles invariant under S that cobound 
chains of Kn invariant under S are generated by (bid, • • • , bjef) 
(1 A)X)xSx«8i and («A)£x5x«82-

5. The integral cohomology groups of the w-fold cyclic product. 
Let C = { C£}, /z = 1, • • • , n, denote the group of the cyclic permuta­
tions of n elements, where C* is the permutation that replaces each 
element except the first by its predecessor, and C£ is the /xth power 
of Cl. Let B=q[xiX - - ' Xxp] denote the chain (xiX • • • Xxv 

XxiX • • • XxpX - • • ) of KPQ. Furthermore, whenever a chain of 
Kpq is written in this notation, it is understood that q is maximal. 
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As in §4 we can consider C^B and Cn{B}. These chains satisfy (5). 
In particular, C%gB = öC$q{B}, where S= — 1 if q is even and X)ir** '1S 

odd, ri — dimension of #»-, and ô = 1 if either g is odd or Yl^rj is even. 
This implies Yl^CpqB = 0, ju, = 1, • • • , £g, if q is even and X)ir* *s °dd, 
and the same sum is divisible by q if q is odd or ^ f r» is even. 

A basis for the chains of Kw invariant under C is given by the dis­
tinct chains of the set (l/<z)]C/*Cn-ö> M==l> * • * > w, pq=n, q odd or 
X^V* even, where the #» range over the elements of the basis (2). 

Let Zi = (l/g)^MCnJ5, g odd or ^ I ^ ' even, where the factors of B 
contain no ƒ/. If the factors of Z± contain no z3-, then Zi is linearly 
independent of coboundaries. Suppose the first factor x\ of B is Z\, 
and fi — eiZi. Let £ be the chain of Kn defined by E = (fiXx2X • • • 
XtfpXxiX • • • X ^ X ^ i X • • • XxpX • • • ). We have that E ' 
=X^C«^> M = l> • * • » n, is a chain invariant under C Further­
more, E' is not divisible by any integer different from ± 1. We com­
pute È'= ei^pCZB —e-iqZx. Let e be the greatest common divisor of 
all the e/s that are associated by (3) with the Zj s that occur among 
the factors of B. We conclude that eq Zx is a coboundary. 

Let Z2 = (l/eq)^pC£B, M = 1, • • • , n, q odd or ]Cir** even, where the 
factors of B contain at least two ƒ3-'s (possibly equal), and e is the 
greatest common divisor of the e/s associated with the / / s among 
these factors. In counting the factors of B we count each factor the 
number of times it is repeated due to the symmetry of B. We can 
prove this theorem. 

THEOREM 3. A basis for the cocycles of Kn invariant under C is 
given by the distinct chains Zi and Z2 ; furthermore, the cocycles of Kn 

invariant under C that cobound chains invariant under C are generated 
by eqZi and eZ2. 
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