
FIELD CONCENTRATION NEAR CIRCULAR CONDUCTORS 

H. PORITSKY 

1. Introduction. The problem considered in this note is the cal­
culation of the maximum field concentration which obtains in the 
field shown in Figure la. Here the semicircles represent the upper 
half of an infinite row of cylindrical metallic conductors at a constant 
potential, the conductors touching each other. There is a potential 
difference between these and the upper plane surface, and it is re­
quired to calculate the resulting field concentration which obtains at 

FIG. la 

the semicircular conductors. The maximum electric gradient will ob­
viously occur at the midpoints between the points of contact with the 
adjacent conductors. 

I t is assumed that the plane surface representing the other electrode 
is sufficiently far away so that the field is quite uniform near it and 
the field concentration is not affected by the distance between the 
circular wires and the plane surface. In fact, throughout the following 
it will be supposed that this plane is at infinity. 

The above problem is of interest in the construction of electric 
cable where a row of circular wires is often arranged around a circular 
cylindrical surface and a potential difference maintained between the 
ions and an outer circular sheath concentric with the axis of the cyl­
inder and external to the wires. To the first approximation the field 
concentration factor which obtains in Figure l a may be carried over 
to the case of a cable by first assuming that the surface made up 
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of the semicircles is replaced by a tangent cylinder, calculating the 
resulting electric gradient at this surface, and then multiplying it by 
the field concentration factor derived from the plane case. 

2. Solutions by means of the modular function. The method em­
ployed in this note utilizes the modular function, X(r), and is based 
upon the fact tha t the function just mentioned maps the shaded re­
gion of Figure lb in the r-plane upon the shaded region of theX-plane 

r-plane 

- 1 0 C T = 1 

FIG. lb 

shown in Figure lc (see Burkhardt, Elliptische Funktionen, Berlin, 
1920, p. 259). Thus the rather complicated boundary consisting 
partly of circles and partly of straight lines is now replaced by rec­
tilinear boundaries only. Therefore the solution of the problem can 
be carried out very simply. The analytic expression for w in terms 
of X is given below. 

It will be noticed that the r-plane is simply related to the original 
s-plane. In fact, this relation is given by 

(1) z = (T /2 )T . 

If the region to the left of the pure imaginary axis of Figure lb , 
and forming the mirror image of the shaded region, is added to the 
latter, the combined region which is bounded by the complete semi­
circle from r = — 1 to r = l and two vertical lines through r = l, 
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T = — 1 goes into a half-plane in Figure lc, namely the half-plane to 
the left of the vertical axis through X = l / 2 . Since the flux lines in 
Figure 2 all meet the circular boundary normally, it follows that the 
corresponding flux lines of Figure lc will all cross the vertical straight 
line through X = l /2 normally. In Figure lb the flux lines go off to 
infinity; in Figure lc they must converge toward the origin E, which 

FIG. lc 

point corresponds to the infinite region of Figure lb , at least for 
ways of recession to infinity in the direction of the pure imaginary 
axis in the r-plane. This means that the flux lines in Figure lc are 
simply due to positive and negative point charges placed, respec­
tively, a t the origin X = 0 and at the point X = 1, which is its negative 
image in the vertical line through X = l /2 (that is, through A of 
Figure lc) . Therefore one might at once express the flux function in 
terms of X as follows : 

X - 1 
(2) w = (1/2) In 

X 
The factor 1/2 is due to the fact that T flux lines are supposed to 
converge toward the origin X = 0, since T flux lines receded to infinity 
in the original z-plane for each period strip. 

3. Expansions in powers of q. The expression for the modular func­
tion is given by 
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168(l + gi-« + g « - « + . . . ) 
(3) X = X(r) = 

(l + 2g + 2g« + 2^+ • • • )4 

(see Burkhardt, loc. cit. p. 253), where q is given by 

(4) q = eTTi. 

I t will be recalled that this modular function is of interest in con­
nection with transformation of periods of an elliptic function and that 
the expression obtained for it, namely equation (3) above, can be 
derived from the ^-functions, being in fact equal to 

#2(0) 
(5) X(r) = 

them's are periodic functions of interest in the theory of elliptic func­
tions and involve as a parameter the quantity q, though this has not 
been indicated in the notation of the right-hand side of (5). q itself 
is given by (4) where r is the ratio of the two periods of the elliptic 
function in question. This connection of the function X(r) with elliptic 
functions is not utilized in the following, and is mentioned here only 
in passing. The only essential feature is the fact that the function X(r) 
defined by (3) and (4) maps the shaded region of Figure lb upon that 
of Figure lc, and yields a simple expression for w (equation (2)). 

To proceed with the calculation of the field it is now necessary to 
evaluate the expression of the derivative dw/dz whose absolute value 
gives the field strength at any point. This derivative will be evaluated 
as a product of four distinct derivatives as follows: 

dw dw d\ dq dr 

dz d\ dq dr dz 

I t is clear from (3) that it is easier to differentiate the logarithm of X 
rather than X itself; hence we shall utilize this derivative: 

d log X 1 d\ 1 1 • 2q + 2 • 3q* + • • • 
= h 4 dq X dq q 1 + q1'2 + ?2 '3 + • • • 

1 • 2q + 2 • 3q* + 
— 4 

1 + 2q + 2q* + 2 ^ + 

Again, from (4) follows 

(8) dq/dr = irieTTi = wiq 

while (1) and (2) yield 
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(9) dz/dr = 2 / T , 

dw 1 r 1 1 1 
(10) = - . 

d\ 2 LX - 1 X J 
Substituting from (7)-(10) into (6) there results 

dw 

dz 

do 

2 Lx + l x J 
d(log X) . 2 

wiç — 
dq K 

l-2q1-2+2-3q*-*+ • • 
l + ? i - t + 3 . . i + . . . 

«7 + 4?* + 9c9 + 

— ] • 1 + 2? + 2g4 + 2^9 + 

The values of the various variables corresponding to the point A of 
Figure l b are 

r = i, X = 1/2, g = 6-* = 10*-635624 ^ .043214. 

Substituting in (11) and taking absolute values, there results 

dw 

dz 
= 2[l + .0149 - .3184] = 1.3952. 

This leads to the field concentration factor 1.3952. 
The above served to check the field concentration factor 1.4 which 

was first obtained by means of a free-hand flux plot of this field shown 
in Figure 2. 

FIG. 2 
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