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ALGEBRA AND THEORY OF NUMBERS 

125. A. T. Brauer: On the non-existence of odd perfect numbers of 
formp^ql • • • çS-iÇtt 

If an odd perfect number exists, it must have the form n = paqf1q2^
2 • • • qf* where 

PJ Q.h Ö2, • • * , qt are primes and £==o: = 1 (mod 4). This was proved by Euler. Sylvester 
obtained estimates for /, in particular / ^ 4 , and / = 7 if n^O (mod 3). Recently, it 
was shown by R. Steuerwald (Sitzungsberichte der Bayerischen Akademie der 
Wissenschaften 1937) that the case 0i = 02 = • • • = 0* = 1 is impossible, and by H. J. 
Kanold (J. Reine Angew. Math. vol. 183 (1941)) that the same is true for 
ft = j32= • • • = 0< = 2. Moreover Kanold proved that n is not perfect if the greatest 
common divisor d of 201 + 1, 202 + l, • • • , 20*+ 1 is divisible by 9, 15, 21 r or 33, and 
some similar results. All these results deal with the case d> 1. In this paper it is proved 
that no odd number of form paqlq2 • • • Qt-iQt exists; here d — \. For the proof some 
theorems of T. Nagell on Diophantine equations are used (Norsk Matematisk Fore-
nings Skrifter 1921). (Received March 24, 1943.) 

126. R. P. Dilworth: Lattices with unique complements. 

For some time an outstanding problem in lattice theory has been the following: 
Is every lattice having unique complements a Boolean algebra? It is shown here 
that the statement is not true. Indeed the following counter theorem is proved: Every 
lattice is a sublattice of a lattice with unique complements. (Received March 20, 
1943.) 

127. J. E. Eaton: A Galois theory for differential fields. 

Let A be an algebraically transcendental extension of the partial differential field T, 
and consider all isomorphisms of A leaving T invariant. These isomorphisms may be 
grouped into a finite number of disjoint sets {w*} = 9ft which, with a suitably defined 
multiplication, is a multigroup called the Galois multigroup of A over I \ There is a 
1-1 correspondence between the subfields of A containing r and the submultigroups 
of $1 such that if A<=±̂ >, then § is the Galois multigroup of A over A and 2f t / /$ (the 
multiplicative system of the double coset decomposition of 9ft with respect to &) is 
the Galois multigroup of A over T. These results are an extension of the work of 
H. W. Raudenbush (Hypertranscendental extensions of partial differential fields, Bull. 
Amer. Math. Soc. vol. 40 (1934) pp. 714-720) and E. R. Kolchin (Extensions of 
differential fields, I, Ann. of Math. vol. 43 (1942) pp. 724-729). (Received March 25, 
1943.) 
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128. D. H. Lehmer: On Ramanujan's numerical f unction r(n). 

Ramanujan's numerical functionr(w) may be defined b y ^ r ( w ) x n _ 1 = {7r(l — x)k )24. 
Among several unsolved questions about r{n) is the so-called Ramanujan hypothesis 
to the effect that if p is a prime | r(p) • p~nf2\ < 2 , which Ramanujan verified for primes 
p<30. The present writer, in attempting to disprove this important hypothesis, has 
examined all primes p <300, as well as /> = 571, and finds that in all these 47 cases the 
hypothesis holds t rue. I t nearly fails for £ = 103 when r(103) • 103" n / 2 = -1 .918 
In connection with this hypothesis Rankin proved in 1939 that as x—>oo, x~12Yln^xr(n)2 

tends to a limit represented by a certain double integral extended over the funda­
mental region of the full modular group. In this paper a practical method is devised 
for evaluating this integral whose value is found to be .0320047918814 • • • . Various 
congruence and divisibility properties of r(n) are also discussed. For example r{n) is 
composite for l < w < 7 9 2 1 . (Received March 26, 1943.) 

129. A. E. Ross: Positive quaternary quadratic forms representing 
all integers with at most k exceptions. 

In this paper it is shown that there are a finite number of classes of positive 
quaternary quadratic forms which represent all integers with at most k exceptions. 
The determinants of such forms have an upper bound Bk depending on k. This is a 
generalization of the results of Ramanujan (Proc. Cambridge Philos. Soc. vol. 19 
(1917) pp. 11-21), Ross (Proc. Nat . Acad. Sci. U.S.A. vol. 18 (1932) p . 607) and 
Halmos (Bull. Amer. Math. Soc. vol. 44 (1938) pp. 141-144). Ross gives £ 0 = 1 1 2 for 
the classic case and Halmos' results imply that J3i^240 in the classic case. (Received 
March 26, 1943.) 

130. L. I. Wade (National Research Fellow): Transcendence prop­
erties of the Carlitz yp-function. 

The paper is concerned with quantities transcendental over the field GF(pn
t x). 

For the Carlitz ^-function (L. Carlitz, Duke Math. J. vol. 1 (1935) pp. 137-168) and 
its inverse X(/) the following theorem is proved. If /3 is algebraic (over GF{pn, x)) and 
irrational and if <XT*0 is algebraic, then \p(p\(a)) is transcendental over GF(pn, x). 
In a sense this is an analogue of Hubert 's seventh problem for the transcendence of 
cfi=*cPloea over the rational number field. (Received March 26, 1943.) 

ANALYSIS 

131. L. W. Cohen: On linear equations in Hilbert space. 

If the rows of the infinite matrix «4=||ai,-|| are points in Hilbert space and 
a)1'")* are the w-rowed determinants with elements in A, it is shown that 
det i l * ! . . . ^ , . . . ^ " ^ . . . / ^ ; ; ; ; ^ : ; ; ^ where Aix.. .^ Bix.. .^ are m-rowed 
minors of A, B respectively. The series is summed over all combinations of integers 
ju • • * » jm and converges absolutely. This identity is used to establish sufficient con­
ditions in order that the linear system represented by Ax = y have a solution in Hilbert 
space for all y in that space. (Received March 24, 1943.) 

132. R. J. Duffin: Some representations for Fourier transforms. 

Let <l>(x) be an arbitrary function and let f(x) and g(x) be defined by the series: 

^ * ) - Z r ( - l ) " * ( ( 2 » - l ) / * ) / * , * ( « * ) - E r ( - * M * / ( 2 » - l ) ) / ( 2 » - l ) . Then if 


