
ON A THEOREM OF NEWSOM 

H. K. HUGHES 

1. Extension of the theorem. In 1938, Newsom1 published a paper 
containing a theorem regarding the behavior for large values of \z\ 
of the function 

(i) /oo = i ; *(»)*•, 
n=0 

radius of convergence equal to oo. I t is assumed that the function 
g(w), where w=x+iy, satisfies the following two conditions: 

(a) it is single-valued and analytic in the finite z^-plane; 
(b) it is such that for all values of x and y, one may write 

(2) \g(x+iy)\ < Ke*w, 

where -ST is a positive constant and k is a positive integer. Under these 
conditions, according to the theorem, f(z) may be expressed in the 
form 

/

°° r _ sin kirx JL g(— m) 
g(x){± & — dx - E ~ + *(*, 0, 

-Z- l /2 Sill WX m =0 Zm 

sin kirx -L g(— m) 
— dx- E 

-Z—1/2 Sill TX m =0 

where / is any positive integer, where the symbol [ ± s ] * means zx or 
{ — z)x according as k is odd or even, respectively, and where if 
|arg [ + z]I <7T, we have l i m ^ i ^ ^ ^ ^ , /) = 0 for every value of /. 

In the present paper we shall consider the situation when condi­
tions (a) and (b) are made somewhat less restrictive. The theorem 
which we wish to prove is as follows: 

THEOREM. Let the coefficient g(n) in (1) satisfy condition (a) except 
for a singularity at the point w = wi, which is not a negative integer; and 
let inequality (2) be satisfied f or all values of \x\ and \y\ sufficiently 
large. Then (3) continues to hold provided one subtracts from the right 
member the loop integral 

1 r g{w)zw 

(4) — — — dw 
2iJc ekriw sinirw 
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where the loop C surrounds the point wXl and extends to infinity in any 
convenient direction lying in either the third or the fourth quadrant. 

PROOF. In a concluding remark in his paper, Newsom infers that, 
under the conditions which we have postulated, the theorem con­
tinues to hold provided one subtracts from the right member of (3) a 
suitable loop integral, which upon examination of the analysis, is seen 
to be 

Jc (sir 2i J c (sin Tw)k+l 

where2 

k /* w 

P(w, z) = 2Z V ' l i w I e~r>"*g(» [ ± z]wdw, 

r = k + 1 - 2j, lgjû k, 

bj = w - i , C7_i = 1 when ; = 1. 
( * - 1)1 

We shall show that the integral I in (5) is equivalent to the integral 
(4). Evidently we may write 

\ S i / / T i ( ^°|^)[ i *W'. 

However, the sum appearing in the above integrand is readily shown 
to be equal to 

1 r . 
[sin T(W — /) r - 1 , 

and this last expression can be written in the form 

i k 

> , ( — 1 ) C y _ i ( S i n TTW) (COS 7TWj (COS 7r/) (S in 7r/) 

Introducing into (5) the resulting new form for P(w, z), and making 
simple reductions, we obtain the equation 

(6) 

where 

k-K Ç ( * k-l j~l 2 ) 
I = I < 2 ^ C ,y-i(— COt TTW) CSC 7TW 0, '(w, z) > dwy 

2i J c \ y=i J 

2 The form of bj as given here may be seen to be equivalent to that given by 
Newsom. 
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(cos i r / )w (s in Tt)'~lg{t)[± z]ldt. 
o 

We may simplify (6) by an integration by parts. Consider first the 
general term of the sum appearing in the integrand. If we let 
u=<f>j(w, z), dv = T(—-cot TW)3'"1 esc2

 TW dw} then, taking account of 
the constant factors, we obtain as an integral of the general term the 
expression 

k k—i ( j 
— Cj_ i< ( — COt WW) <t>j(w, z) 

lij 

— I (— cot 7rw)>'(cos TW) k~J'(sm ww)J~lg(w) [± z]wdwV . 

Moreover the expression 0,-(«/, z) and the indefinite integral here ap­
pearing are both such that they can be evaluated along the loop C. 
Simplifying the above form and summing with respect to j , we have, 
as an integral of the entire integrand in (6), the sum 

(7) 

k * ( - 1 ) ' j b - i j , ,,• , , 
— 2L, ; Cy_i< (COt TTW) 0y(w, Z) 

g(w)[± z]w 

— I (COS TTW) k ; dW > . 
J s in WW ) 

If we now agree to let C extend to infinity in a direction of either of 
the third or fourth quadrants, then at the infinite extremities, the 
function cot TW has the value i. Consequently, upon evaluating (7) 
along C and combining properly the definite integrals which arise, 
we arrive at the result 

(8) /_*f{i<zJ)î<ti(.',«_,',}«<4liv_^ 
2i J c \ y-i J J sin TW 

where a and b denote i sin TW and cos TW, respectively. The sum ap­
pearing in the integrand of (8) is easily shown to be equal to 
k~1(b—a)k

f or k~1e~kTiw. Substituting this quantity for the sum, we 
have the integral (4). 

The above theorem assumes only one singular point of g(w), but 
the extension to the case when a finite number of singularities occurs 
is obvious. Moreover, if a singularity is polar in character, then the 
corresponding loop integral reduces to the residue of the function 

_1_ g(w)[± z}w 

21 ekTiw s m TW 
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at the pole. Furthermore, if a singularity is a negative integer, say 
— n, then the corresponding term in z~n in (3) is to be suppressed and 
in its place is to be substituted the proper loop integral. 

2. Asymptotic developments. The theorem of Newsom, together 
with the extension just established, finds application in the determi­
nation of asymptotic developments for large values of | z\ of such in­
tegral functions as are defined by (1). I t is evident that in order to 
determine completely the asymptotic development of a given func­
tion ƒ(s), one must first find such developments for the integral ap­
pearing in the right member of (3), and each loop integral (4) that 
may occur. The first of these questions is a problem about which we 
shall not concern ourselves here, but we shall discuss briefly a method 
by which the second question can often be answered. 

If the singularity wu of g(w)> is algebraic in character, then g(w) 
can be written in the form g(w) = {w — Wi)6^{w)1 where $(w) is 
analytic at w = wh <f>(wi) 7^0, and where 6 is a real constant not equal 
to zero or a positive integer. One of the transformations w' = ± (w — Wi) 
will then transform (4) into an integral of the form 

(9) ƒ(*,£) = — f F O ) ( - wy-\- [± z])-»dw 

where /3 is a constant, and where C' is a loop about the origin w = 0 
(the primes having been dropped), and extending to infinity in a di­
rection lying in either the first or the fourth quadrant. Moreover, 
F(w) is analytic at the origin, and possesses a convergent series de­
velopment of the form 

00 

F(w) = J2cn(- w)n, 

radius of convergence greater than 0. According to a theorem due to 
Barnes,3 if F(w) is bounded in the distant right half w-plane, and if 
the expressions ( — wY"1 and ( — [ ±z])~w are made precise by suitable 

3 For a full statement and proof of the theorem of Barnes, see Ford, Asymptotic 
developments of functions defined by Maclaurin series, Michigan Science Series vol. 11 
(1936) p. 16. This book also contains a proof of the theorem of Newsom for the special 
case in which k — 1, together with the extension and numerous applications. For proof 
of the theorem, see chap. 4; for applications, see chaps. 6 and 7. For further applica­
tions of the theorems of Ford and Newsom, and of the theorem in the present paper, 
see C. G. Fry and H. K. Hughes, Asymptotic developments of certain integral functions, 
Duke Math. J. vol. 9 (1942) pp. 791-802. 
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definitions, then the loop integral I(z, /3) in (10) is developable asymp­
totically in the form 

/(*, 0) ~ £ 
fo [iog(- [±*])]^»r(i - i s - » ) 

It thus appears that the presence of an algebraic singularity of g(w) 
presents no serious difficulty. 

PURDUE UNIVERSITY 

ON SOME FORMULAS INVOLVING THE DIVISOR FUNCTION 

HERBERT S. ZUCKERMAN 

Viggo Brun1 has proved the formulas 

(1) Ti(n) - T2(n) + Tz(n) = - /*(»), * > 1, 

h{n) = Tx(n) - (1/2) r2(») + (1/3) r8(») 

(2) (0 if n is not a prime power, ƒ0 if n is 

~ 11/1 if n l/tiin^p^pa, prime; 

where Ti{n) is the number of ways that n can be expressed as a prod­
uct of / factors, each greater than 1. He obtains them as special cases 
of combinatorial theorems. Pavel Kuhn2 has also given proofs but 
it seems that no one has attempted to give elementary number theory 
proofs of these formulas. It is the purpose of this note to give such 
proofs and to point out a few other formulas similar to (1) and (2). 

All the formulas which we shall prove can be proved very con­
cisely by using the generating function 

£ r , ( » ) » - = {{•(*)-i}«, 
n = l 

and some simple properties of the zeta-function.3 Our number theory 
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2 Det Kongelige Norske Videnskabers Selskab, Forhandlinger, 1939. 
3 Interchanging the order of summation we have ^2Z-^dr^i(-"^)l~1Ti(n)n~"8 

- E ^ i C - ^ ^ M r W - l J ^ - r W - ^ - E ^ i M W w - 8 , and (l) is obtained by 
comparing coefficients of n~8 in the two members. Similarly, (2) follows from 
Z"-iEE.i(-i)MfHir,(»)»-'-.2:r_,(-i)M/-»{f(*)-ij'-iogf(*)-E#ioga-*-•)•* 
-ZiSr- i / - , r" . 


