FUNCTIONAL TOPOLOGY
MARSTON MORSE

Introduction. The present paper gives the fundamental existence
proof for a homotopic critical point under hypotheses which are less
stringent than those employed in the author’s recent fascicule on
functional topology and abstract variational theory [2]. This relaxa-
tion of hypotheses seems to be necessary if one is to extend the varia-
tional theory in the large to non-regular problems. Non-regular
integrals include some of the most important and interesting integrals
such as the Jacobi least action integral! in the three body problem of
celestial mechanics. The author believes that a topological basis for
the planetary orbits will be disclosed by studying the contour mani-
folds of this Jacobi integral.

The results of this paper will be used to extend the theory in the
large to non-regular problems in two papers by Morse and Ewing.

1. The metric spaces M, L, J. We are concerned with a compact
metric space M of elements p, ¢, 7, - - - and distance pgq, pr, - - - .
We shall deal with two functions J(p) and L(p), bounded, single-
valued, and lower semi-continuous on M. In the applications p will
be a curve joining two fixed points in some space, the distance pg will
be the Fréchet distance between curves, while J(p) and L(p) will be
integrals along p, with L the length of p.

Beside the metric M we shall use two other metrics, an L-metric
with a distance

| g| = pg +1L(p) — LD |,
and a J-metric with a distance,
pa+|J() —T@|.

We shall refer to the corresponding spaces as the spaces L and J. We
shall make the following hypothesis.

HyproTHESIS. Convergence on L to a point p shall imply convergence
on J to p.

We shall not assume that convergence on J to p implies con-
vergence on L to p. Convergence on L or J clearly implies con-
vergence on M. Terms such as neighborhood, compact, and so on
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1 For other examples see paper [1] by McShane.
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will be preceded by the letters M, L, or J according to which metric
is used to define them. Every M-neighborhood of a point p contains
an L-neighborhood of p, but not conversely. Every J-neighborhood
of p contains an L-neighborhood of p, but not conversely.

The subset of points on which J=c¢ will be denoted by J°. The set
J¢ is M-compact since J is lower semi-continuous on M. But J° will
not in general be L or J-compact. In fact an M-compact subset 4
would be L-compact if and only if L(p) were M-continuous on 4.
Similarly with J-compactness. In seeking to cover sets such as J°¢
with a finite number of neighborhoods we accordingly use M-neigh-
borhoods, although it would be simpler if we could use L-neighbor-
hoods.

On the other hand the deformations which we shall use in later
papers are adequate only if their continuity is L-continuity. We shall
thus be using L-continuous deformations defined over M-neighbor-
hoods. But J-neighborhoods enter also, since there are important
properties which can be established for J-neighborhoods but not for
L or M-neighborhoods.

Our chains and cycles shall be defined on L using L-continuity.
They shall be finite singular chains and cycles, taken mod 2, see
[3, p. 146]. The point set bearing a singular chain is L-compact and
hence J-compact. We shall term the least upper bound of J on an
arbitrary set E, the J-height of E. In general we shall say that a point
p is above or below q according as J(p) is greater or less than J(g). We
shall admit relative k-cycles # in which the modulus is always a set
J¢in which c is less than the J-height of .

2. J-deformations. Let E be a subset of L. Let I be an interval
0=7=a (¢>0). By EXI we shall mean the product of E and I,
assigning the usual metric to the space E XI. We shall admit defor-
mations D of E which replace a point p found on E at the time 7=0
by a point ¢(p, 7) on L at the time 7 (0 =<7 =<a). If D is to be admissible
we require:

(a) That q(p, 7) map EXI continuously into L.

(b) That for p fixed q(p, T) map I continuously into M uniformly
with respect to (p, v) on EXI.

We shall say that D is a weak J-deformation, if for p on E and for
g=q(p, 1), J(p)—J(g) =0 for each 7 on I. A weak J-formation
g(p, 7) will be said to be proper on E, if when 7 is bounded from
Oon I,

J(p) —J(g) >e>0, q = q(p, 7),

where e is a constant independent of p on E.
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A point p will be said to be homotopically J-ordinary if some
J-neighborhood of p admits a proper J-deformation. A point which
isnot homotopically J-ordinary will be termed komotopically J-critical.

We shall say that J is upper-reducible at p if for each constant
a>J(p) there exists a weak J-deformation of some M-neighborhood
of p which is proper for points initially above a.

The reader may wonder why a J-neighborhood is used in the above
definition of a J-critical point while an M-neighborhood is used in
the definition of upper-reducibility. A J-neighborhood is used in this
connection because otherwise we are unable to prove that a rectifiable
curve which is not an extremal is homotopically J-ordinary.? This
reflects the fact that being an extremal is a consequence of properties
possessed by weak neighborhoods such as J-neighborhoods. On the
other hand an M-neighborhood is used in the definition of upper-
reducibility since otherwise we could not prove the fundamental
Theorem 3.1 of this paper. For, as one sees from its definition, upper-
reducibility is not concerned merely with points ¢ at which J(g) is
near J(p), so that a J-neighborhood would be too restrictive.

We come to products of deformations. Let D be a deformation of
aset 4. The set of final images of points of 4 under D will be denoted

by D(4). Let By, - - -, B, be a set of weak J-deformations such that
B, is applicable to 4, B, to Bi(4), and more generally B is ap-
plicable to B; - - - Bi(4). In such circumstances the deformations

B, - - - By will be said to define a product deformation A. The de-
formation A is applicable to 4. One sees that A is a weak J-deforma-
tion of 4.

The following lemma shows how a weak J-deformation can be ex-
tended as a weak J-deformation beyond a local domain of definition.

LeMMA 2.1. Let B be a subset of L and s a point of B. Let S, be the
intersection with B of a spherical M-neighborhood of s of radius r. Sup-
pose that Ss. admits a weak J-deformation D. Then D can be replaced
by a weak J-deformation 0 of B such that0 =D for points initially on S.
and 0 is the null deformation for points initially exterior to S..

Suppose the time 7 in D varies on the interval (0, ¢). Under 0, 7
shall likewise vary on (0, a). Points of B initially on .S, shall be de-
formed under 6 as under D while points of B initially exterior to S,
shall be held fast. Points p of B at a distance ps from s such that

(2.1) e = ps = 2e,

2 This theorem is the basic generalization of the Euler theorem that a curve (of
class C’) which is not an extremal is not minimizing.



1943] FUNCTIONAL TOPOLOGY 147

shall be deformed under @ as follows. Let ¢{(p) divide the interval
(0, @) in the ratio inverse to that in which ps divides the interval
(2.1). That is, let

Hp)  2e— ps

a €

, e = ps = 2e.

Under 6 points p of B which satisfy (2.1) initially shall be deformed as
under D until 7 reaches £(p) and shall be fast thereafter.

Let ¢(p, 7) be the image of p under 6. Recall that ps, and hence
t(p), vary continuously as p varies L-continuously on Sy, —.S,. It will
be convenient to set#(p) =a for p on S, and ¢(p) =0 for p on B —.S,..
Then ¢(p) is defined and continuous as p varies on B. To establish
the continuity of ¢(p, 7) one breaks the domain of the pairs (p, 7)
into the two domains

2.3 [0=7=1p| [p on B],
(2.4 [#(p) = 7 = a] [# on B],

with the set on which 7=¢(p) in common. On the second domain
g(p, 1) is constant. On the first domain ¢(p, 7) equals the point func-
tion defining D. The functions g(p, 7) defined over these separate
domains obviously combine to define a function ¢(p, 7) with the
properties of a weak J-deformation of B.

3. The fundamental theorem. Two different sets of neighborhoods
U and V, respectively, covering a given space, will be said to be
equivalent if each neighborhood U of each point p contains a neigh-
borhood V of p, and conversely. In this sense the set of J-neighbor-
hoods is equivalent to the set of neighborhoods V(p) defined by
conditions of the form

(3.1 pg<é,  J(@ <J(@p)+e

where p is fixed and & and e are arbitrary positive constants. This is a
consequence of the lower semi-continuity of J(p) for p on M. For the
relation pg <8 implies the relation

(3.2) J(p) —e<J(g

if 6 is sufficiently small. Conditions (3.1) and (3.2) taken jointly
define a set of neighborhoods equivalent to the set of J-neighbor-
hoods, so that the set of neighborhoods (3.1) is equivalent to the set
of J-neighborhoods. We shall therefore feel free to replace J-neighbor-
hoods by neighborhoods of the type (3.1).

We continue with a fundamental theorem.
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THEOREM 3.1. Let C be an M-compact set with J-height ¢, containing
no homotopic J-critical points at the level c. If J is upper-reducible at
each point of C there exists a weak J-deformation of a J-neighborhood of
C into a set with J-height less than c.

I. If p is a point of C at the level ¢, p is homotopically J-ordinary.
There accordingly exists a spherical M-neighborhood V(p) of p and
a positive constant c(p) >c such that the intersection J® . V(p) ad-
mits a proper J-deformation D(p).

II. If p is a point of C below ¢ the upper-reducibility of J at p
implies the following: there exists a spherical M-neighborhood V(p)
of p and a constant a(p) <c such that V(p) admits a weak J-deforma-
tion D(p) which is a proper deformation of the subset of V(p) above
a(p).

Let U(p) and R(p) be spherical M-neighborhoods of p with radii
one-third and one-sixth that of V(p), respectively. Since Cis M-com-
pact there exists a finite set of neighborhoods R(p), say neighborhoods
Ry, - -+, R, of points pi, - -+, pa, respectively, covering C. For
points p; at the level ¢, set p=min ¢(p;). For points p; below ¢ set
v=max a(p;). We shall apply Lemma 2.1 setting s=p;, B=J* and
e is equal to the radius of U;= U(p;). With this choice of s, B and e
we infer the existence of a weak J-deformation H; of J* which de-
forms U;-J* as does D(p;).

Let 7 equal the minimum of the radii 7; of the spheres R;. Let 8; be
a weak J-deformation defined by taking the time interval in H; so
short that the maximum M-displacement under 6; is less than 7/x.
The product deformation A =40, - - - 0; is a weak J-deformation of J#*
and displaces no point an M-distance in excess of 7 <7;. In particular
we can conclude that

3.3 Oiea -+ - 0:(Ri-J¥) C Uy Jn

Let S; be the set defined by the left number of (3.3) and let C; be
the subset of S; above ». The deformation 6; is proper on C; since
6;=D(p;) on Ci. If C;#0, the J-height of C; is accordingly diminished
under 0; by a positive constant 5;. If C;=0, set #7;=0. Let 29 be a
positive constant less than each 7,70 and such that ¢4 <gu (recall
that ¢ <u). Then A deforms the set

(3.4) (Ri+ -+ + Ry Tt

into a set with a J-height at most max (v, c —1) <c.
The set (3.4) contains a J-neighborhood of C and the proof of the
theorem is complete.
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A class K of k-cycles on L, either relative or absolute, will be said
to form a J-class if any cycle into which a cycle # of K can be carried
by a weak J-deformation is also in K. With this understood we have
the following corollary of the theorem.

COROLLARY 3.1. Suppose J is upper-reducible at each point of an
M-compact set C. If there exists a J-class K of k-cycles such that K
includes a cycle in each J-neighborhood of C but no cycle with a J-height
less than that of C there exists at least one homotopic J-critical point
with the J-height of C.

In applying this corollary one is led to the two following speciali-
zations.

COROLLARY 3.2. Let K be a homology class of absolute k-cycles, non-
bounding on L, and let ¢ be the greatest lower bound of J-heights of
cycles of K. If J is upper-reducible at each point of J° there exists a
homotopic J-critical point of J at the level c.

Corollary 3.2 follows from Corollary 3.1 upon taking C as J°.

CoROLLARY 3.3. Let K be a homology class composed of k-cycles
mod J¢, non-bounding mod J* on L, and let ¢ be the greatest lower bound
of J-heights of cycles of K. If ¢>a and if J is upper-reducible at each
point of J° there exists a homotopic J-critical point at the level c.
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