
EXPANSIONS OF QUADRATIC FORMS 

RUFUS OLDENBURGER 

1. The problem. A quadratic form Q with coefficients in a field K, 
whose characteristic is different from 2, is usually given as a linear 
combination 

n 

(1) X) dijXiXj 
t = l 

of products [xi Xj}, where (atv) is symmetric. The sum (1) is one of 
the type 

(2) £AM„ 
»=I 

where the Z/s and ikf s are linear forms. In general the decomposition 
(1) is not the most economical way of writing Q as a sum of the 
type (2) in the sense that r is a minimum for Q. In treating algebras 
associated with quadratic forms E. Witt1 showed that the form Q is 
equivalent under a nonsingular linear transformation to a decom­
position 

<r r—2<r 

(3) £ y#i + Z) v&* 
«•=,1 t-^i 

where the last sum is a nonzero form, and r is the rank of Q. In the pres­
ent paper we shall show that the minimum r for Q is r — o\ Thus this 
minimum r is determined by the rank r and the "characteristic" or of Q. 
This characteristic2 is the maximum number a of linearly independent 
linear forms Li, • • • , L„ such that the rank of Q + \ i L ? + • • • +\9Ll 
is the same as the rank of Q for all values of the X's. The form Q has 
characteristic a if and only if Q has the canonical splitting G+H, 
where G has characteristic a and rank 2<r, while H has characteristic 
0 and rank r — 2cr. The form G has a decomposition (2) with T — <T. 
The decomposition (3) is one such that the first sum is a form G of 
the type described and the other a form H. Thus it will be proved 
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that the decomposition (3) corresponding to a canonical splitting 
G+H of Q is one with a minimum number of terms. 

Like the rank of Q the characteristic of Q has the property that this 
characteristic changes at most by 1 under addition of a term XL2, 
L linear, to Q. We shall prove here that actually the minimum r, the 
characteristic cr defined above, and the index3 (if K is real) possess 
this property of changing at most by 1 under additions of the type 
LM to Q, where L and M are arbitrary linear forms. 

We recall tha t the rank r of Q is the minimum r for which Q can be 
written as a sum (2), where for each i the forms Li and Mi are 
linearly dependent. Thus both the rank alone, and the rank and 
characteristic of Q, yield minimum properties of expansions of Q 
invariant under nonsingular linear transformations on the variables 
in Ç. 

I t will be understood throughout the present paper that the co­
efficients are in a field K of the type specified above. The field K is 
otherwise unrestricted, except where K is taken to be the real or 
complex fields. 

2. Solution of the minimum problem. The following lemma needs 
no proof. 

LEMMA 1. The characteristic of a quadratic form Q is invariant under 
nonsingular linear transformations on Q. 

The lemma to follow was proved elsewhere.4 

LEMMA 2. The characteristic of a quadratic form Q changes at most 
by 1 under addition to Q of a term XL2, L linear and X in the given field. 

LEMMA 3. The characteristic of a quadratic form Q is at least as great 
as the characteristic of each form Q* obtained from Q by imposing 
homogeneous linear relations on the variables in Q. 

We write Q as in (1), and suppose that Q* is obtained from Q by 
equating xi, • • • , xe-\ to zero for some e. The matrix A = (af-y) of Q 
can be written as 

il * * n 

where B is the matrix (a*/) [i, j = e, • • • , n] of Q*> and the asterisks 
in A indicate minors of A. We let a designate the characteristic of 

3 The index of a real quadratic form Q is the number h of + signs in a canonical 
form # ! + • • • -\"Xh—xh+l— • • • — xr to which Q is equivalent. 

4 See the above reference to a paper by R. Oldenburger. 



138 RUFUS OLDENBURGER [February 

the form Q*. Since Q* has a canonical splitting, as described in §1, 
the form Q* is equivalent under a nonsingular transformation to the 
form 

(4) J2 UiVi + F> 
* - l 

where F is a form of characteristic 0 whose variables are linearly in­
dependent of the u's and v's. With the form (4) we may associate 
the symmetric matrix 

0 0 

0 C 

of order n — e + ly where C is a nonsingular minor of the type 

0 0 / 

0 D 0 

7 0 0 

the minor I being an identity matrix of order a [arising from the 
summation in (4) ]. I t follows from elementary matrix considerations 
that there is a nonsingular matrix N such that 

N'AN = 
E 0 

0 0 

* 
* 

* 

/ 

* 
* 

* 

0 

* / 1 
* 0 

D 0 

0 0 1 

where £ is a nonsingular minor with the shape 

E = 

and N' designates the transpose of N. We let T = T(yi, • • • , yn) be a 
quadratic form in yi, • • • , yn associated in the usual manner with 
N'AN. The rank of r+Xi3>ï+ • • • +X«^« is the same as the rank of 
T for all values of the X's. Since T is equivalent to Q the characteristic 
of Q is a t least a. 

Suppose now that we impose homogeneous linear relations 
Zi = 0, • • • , Z, = 0 on the variables xh • • • , xn in Q. I t is no restric­
tion to take these Z's to be linearly independent forms. We may 
therefore use these Z's and enough of the x's to obtain a set of 
linearly independent forms, which we may employ as the n variables 
in terms of which Q is expressed. By Lemma 1 this change of vari-
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ables leaves the characteristic invariant. Thus the problem which 
arises when the Z's are set equal to zero reverts to the above case 
where Xi= • • • = #e~i = 0. 

THEOREM 1. The minimum rfor which a quadratic form Q with rank 
r and characteristic a has the expansion (2), where the Us and M's are 
linear forms, is r — cr. 

We suppose that Q is written as (2), where r is a minimum. If for 
some i and element ki we have Mi^kiLi} we write kiL% in place of 
LiMi (i not summed). Thus we can split the sum (2) into R+S, 
where 

(5) R=irLiMu S = i2viNl 
*—I t—i 

Li being linearly independent of Mi for each i, and the N's being 
linear forms. The Z/s form a set of linearly independent linear forms, 
since otherwise we can write R as a sum of products of linear forms 
with less terms. As in §1 we write a canonical splitting of Q as G+H. 
Since Q has rank r, we may take Q to be a form in r independent vari­
ables. Since the rank of S is /, we have t^r — 2s. If s<ay we have 
s+t >r — cr, whence the decomposition corresponding to the canonical 
splitting G+H has less terms than (2). Thus s^a, and we can write 
s = (r+p for a p ^ O . 

We relabel the subscripts on the Z/s, ikfs, and N's if necessary so 
that the forms in the set 2 , where 

2 = (Zx, • • • , Lff+P, Mu • • ' . Mt, Nl9 • • • , #*), 

yield a minimal basis for the Z/s, M's and N's. Here ^ r — cr — p — f. 
If (2) is a more economical decomposition than that which arises 
from G+H, we have tSr — p — 2<r — 1. Now t^r — a — p — f. These in­
equalities yield f è < r + l . We suppose that f satisfies this inequality. 
We let Q' designate the form 

Q - Z "<#î. 

Since by Lemma 2 the characteristic changes a t most by 1 under 
each subtraction with V{Nf (i not summed), the index a of Q' is such 
that 

a S <r + t - £. 

Eliminating / with the aid of an inequality relation above, we have 
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We take the linear forms in the set 2 to be the variables in terms of 
which the form Q' above is expressed. Setting Lf+i, • • • , £<r+p = 0, 
we obtain from Q' a form Q" with index f. By Lemma 3, we have 
a ^ f , giving us a contradiction. I t follows that T = r — a. 

For the complex field the characteristic a of Q is [r /2] , whereas 
for the real field a is the minimum of the indices of Q and — Q. These 
results yield Corollary 1. 

COROLLARY 1. For the complex field the minimum number r of Theo-
rem 1 is r— [r/2]. For the real field r is the maximum of the indices of 
Q and — Q. 

Witt proved6 that a form is a zero form if and only if the charac­
teristic a of this form is greater than 0. 

COROLLARY 2. The form Q of Theorem 1 is a zero form if and only if 
T?£r. 

By Theorem 1 the sum (2), where r is a minimum, is a sum with 
the R and 5 of (5) satisfying R = G, S=H, the sum G+H being a 
canonical splitting of Q. 

Although addition of a term LM, L and M linear, may change the 
rank r of Q by 2, this is not true of the index a and r = r — a as we 
shall now prove. 

THEOREM 2. Under addition of a term LM, L and M linear, to a 
quadratic form Q, the characteristic a, and the minimum number r for 
decompositions of type (2), change at most by 1. 

We write C a s a sum (2) where r takes on the minimum value 
r — c, the rank of Q being r. We let r r , r', a' designate the analogues 
for Q' = Q+LM of r, r, <r for Q. Since 

£ ' = J^LtMi + LM, 

we clearly have r ' g r + l . Thus r changes at most by 1 under the 
addition of L M to Q. 

We suppose that L and M are linearly independent of each other 
and of the variables in Q so that r' = r + 2 . We write Q as R + S, where 
R and 5 are given by (5) with s = cxy t = r — a, whence 

<r r—c 

(6) Q m £ UMi + Z nN{. 

See the above reference to a paper by E. Witt 
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The form R', where R' = R+LM> has index <r+l and rank 2(<r+l), 
from which it follows tha t Q' has the canonical splitting R' + S' with 
S ' e S. Thus Q' has index er+1. 

If L and M are taken linearly dependent, or one or both of the 
forms L, M are restricted to be linear forms in the variables of Q, 
by Lemma 3 we obtain from the form Q' of the preceding paragraph 
a form Q* whose characteristic does not exceed cr+1. Thus in any 
case c r ' ^c r+1 , whence also a^a' + l. 

If the rank of Q+LM is less than the rank of Q, Theorem 2 implies 
that the characteristic of Q+LM does not exceed that of Q, whereas 
if the addition of LM to Q decreases the rank of Q by 2, this addition 
also decreases the characteristic of Q. 

We have the following analogue of Theorem 2. 

THEOREM 3. Under addition of a term LM, L and M linear, to a real 
quadratic form Q, the index of Q changes at most by 1. 

We write Q as the sum P+N of a positive definite form N and 
a negative definite form N, the rank of Q being the sum of the ranks 
of P and N. We suppose that Q is written in any way as a sum 
P' + N', where P' and N' are positive definite and negative definite 
forms respectively. The index a of Q is the rank of P . We let j8 desig­
nate the rank of P ' , whence 

for linear forms Pi, • • • , Pp. We suppose that a> /3 . Setting 
p1== . . . =zPp = Of w e have P ^ O , while P+N is negative definite, a 
contradiction. Thus a^jS. 

The form LM can be written as the difference R2 — S2, where R and 
5 are linear forms, or one of the terms R, S is zero. The form Q+LM 
is a sum of the positive definite form P + P 2 , and negative definite 
part N — S2. Since the rank of P+R2 differs at most by 1 from the 
rank of P , the index of Q+LM does not exceed a+1. I t follows that 
the indices of Q and Q+LM differ at most by 1. 
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