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The object of this paper is to extend the theorem of Cauchy to func­
tions of a complex variable defined on any bounded closed set, £ , by 
determining conditions on ƒ (z) in order that for certain coverings of E, 
Cn, and an extension of f(z), /*(z), lim,*.^ fCnf*(z)dz = 0. It was sug­
gested partly by the notion of a general monogenic function due to 
Trjitzinsky1 and partly by the measure theory methods of Menchoff2 

and others, which succeed so well in lightening the restrictions on the 
real and imaginary parts of a complex function in order that f{z) be 
regular. 

Throughout this paper we shall consider only rectangles with sides 
parallel to the real and imaginary axes. A C-covering of a plane set F, 
denoted by C, will be a set of closed rectangles, possibly abutting, but 
nonoverlapping, which contain F. c will denote the boundary of C. 
The covering Cn is to be composed of rectangles Rmn so that 

1. The extension,/*(JS). If u(P) is a positive continuous function 
defined on the closed and bounded set F in the plane, we shall let3 

w*(P)=max Q G / , u(Q){2-d(P, Q)/d(P, F)} for P not in F, and 
#*(P) = w(P) for P in P, where d(P, Q) denotes the distance from P 
to Q and d(P, F) the distance from the set F to P. In general, if u(P) 
is continuous, since u(P) = (u(P) + \ u(P)\ ) / 2 - (| u(P)\ - « ( P ) ) / 2 , 
that is, since u(P) is the difference of two continuous positive func­
tions, u*(P) will denote the extension of u(P) obtained by extending 
as before these parts. If f(z) ( — u(x, y)+iv(x, y)) is defined on a 
bounded closed set and continuous, ƒ*(z) will denote u*(x, y) +iv*(x, y). 

LEMMA 1. If u{P) is defined on a bounded closed set F and \u{Q) 
— u(P)\ <M(P)d(P, Q) where M(P) is a finite function of P defined 
on F, then | «* (P) -w*(Q) | <20 M(P) d(P, Q),for P in F and Q ar­
bitrary. 
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1 W. J . Trjitzinsky, Théorie des Fonctions d'une Variable Complexe Définies sur des 
Ensembles Généraux, Annales Scientifique de L'École Normale Supérieure, Paris, 1938, 
p. 120. 

2 D. Menchoff, Les Conditions de Monogênêité, Actualités Scientifiques et Indus­
trielles, no. 329, Paris, 1936. 

3 S. Bochner, Fourier Lectures, 1936-1937, Princeton, p. 62. 
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PROOF. Consider first the case for which u(P) ^ 0 . If Q is any point 
not in D, if Q0 is a point in F for which d(Q, Q0) =d(Q, P), and if, of 
the points S satisfying the inequality d(S, Q)^2d(Q, Qo), R is the 
point where the maximum of u is attained, then u*(Q0) ^u*(Q) 
£u*(R). Hence 

I u*(Q) - u*(P) | g | u*(Q) - u*(R) | + | u*(R) - u*(P) \ 

S I u*(Qo) ~ u*(P) | + 2 | u*(R) - u*(P) | 

< M(P)d(Q0, P) + 2M(P)d(R, P). 

It is easily verified that d(Q0, P)^2d(Q, P) and d(R, P)^4d(Q, P ) , 
so that \u*(Q)-u*(P)\ <10M(P) d(P, Q) and the lemma is proved 
for case of u{P) positive. In the general case, u(P) = (\u\ +u)/2 
— (\u\ —u)/2=g(P)—h(P), where g and h are positive functions, 
and satisfy the conditions of the lemma, so that for P in F and Q 
arbitrary | g*(Q) — g*(P) | and \h*(Q)—h*(P)\ are each less than 
10M(P) d(P, Q). Hence for w*=g*-&*, it readily follows that 
\u*(Q)-u*(P)\ <20M(P) d(P, Q), and the proof of the lemma is 
complete. 

2. Bounded derivatives. We shall use the following fundamental 
lemma:4 

LEMMA 2. Let w(x, y) be a real, continuous function defined in the 
square S, the sides of which are parallel to the coordinate axes, and let F 
be a closed set in S and such that 

| w{% + h, y) — w(x, y) | ^ M \ h \ , 

I w(x, y + k) — w(x, y)\ ^ M \ k \ 

for all points (x, y) in F and f or all points (x+hy y), (xf y-\-k) of the 
square S, where M is a constant. Finally let R be the least rectangle with 
sides parallel to the axes containing P.5 

Under these conditions* the following inequalities hold : 

ƒ. <•* r r dw 
[w(x, y2) — w(x, yi)\dx — I I • dxdy 

*i J J F dy 

ƒ» V2 r r dw 
[w(x2j y) — w(xi, y)\dy — I I dxdy 

yi J J F àX 

S 5Mm(S - P ) , 

^ SMm(S - F) 

where (xu yx), (x2, yi), (x2, y2) and (xx, y2), {xx^x2, y\^y%) are the 
4 For the proof of this lemma, cf. loc. cit., p. 10. 
5 The "least rectangle" may be only a segment or a point. 
6 The conditions on w imply the existence of the partial derivatives a.e. in F. 
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corners of the rectangle R and m(S— F) is the measure of the set S— F, 
which is composed of points of S not in F. 

THEOREM 1. Let f(z) ( = u(x, y)+iv(x, y)) be defined on the bounded 
closed set E, and let R be a rectangle with sides parallel to the axes con­
taining at least one point of E on each side. If {letting F — ER) 

(1) for all z and z+hin F, and a constant Bt 

ƒ(* + *) - ƒ(*) 

h 
<B, 

(2) the Cauchy-Riemann equations hold a.e. (almost everywhere) in 
F, where the partial derivatives of u and v exist,1 then \Jrf*(z)dz\ 
<400Bm(S— F) where r is the boundary of R, and S is a square of 
least area containing R. 

PROOF. If h = k+il, condition (1) implies 

u(x + kt y + /) — u(x, y) _ <B, 

and a similar condition on v(x, y), for every point z, and z + h, in F. 
According to Lemma 1, 

u*(x + k, y + I) — u*(x, y) 

h 
< 20B, 

for each point z in F, and z+h in R. Hence by Lemma 2, 

/

x2 r r du* 
[w*(#, 3̂ 2) — u*(x, yi)\dx — I I dxdy 

xi J J F dy 
< 100Bm(S-F)9 

(xi, yi) and (^2, 3̂ 2) being corners of R. Similar inequalities for u*(x, y) 
with respect to y, and v*(x, y) with respect to x and y also hold. But 

and 

I f*(z)dz = I u*dx — v*dy + i I v*dx + u*dy 

u*dx = — I [U*(x, y2) — u*(x, yi)]dx. 
J xi 

7 This is in no way a further restriction on E, for almost all points of any measur­
able plane set are points of linear density for it both in the direction of the x-axis and 
in that of the ^-axis. 

The condition that the limits, l im^o (f(,z-\-h)—f(z))/ht as z+h approaches z 
through points of E along either of two curves having non-collinear tangents at z, 
should be equal, is equivalent to the condition (2) in the presence of (1). For (1) and 
(2) imply that f*(z) is monogenic a.e. in E (Menchoff, loc. cit., Theorem 2, p. 27 and 
Theorem 5, p . 23). 
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Let t'=fxl[u*(x, y^)—u*(x, yi)] dx—jjF{du*/dy)dydx. Then Jru*dx 
= — ffp(du*/dy)dydx — e'. Taking into account similar reasoning for 
the other parts of frf*(z)dz we have 

f*(Z)dz= - ( + \dxdy 
r J J F\oy dx / 

r r /du* dv*\ 
+ i \^~~~J~)dxdy + € 

J J F\OX ay / 
where | e| <4=00Bm(S — F). Since the Cauchy-Riemann equations 
hold a.e. in F, frf*(z)dz = e, and the proof of the theorem is complete. 

COROLLARY. Let f(z) be defined on the bounded closed set E with a 
bounded derivative there. Let S=^mSm be a C-covering o f E by squares 
with Rm the least rectangle within Sm containing Sm-E. Then there is a 
constant B for which ^m\ frmf*(z)dz\ <4:00Bm(S — E), and if S—>E, 
C=^2mRm—>E, and limc^E fcf*{z)dz = 0. 

3. Derivatives finite, except for a denumerable set. We prove this 
theorem : 

THEOREM 2. If f{z) is defined and continuous on the bounded 
closed set E, and if, except for a denumerable number of points, 
lim sup>i_o | (J(z+h) —f{z))/h\ < <x>, and the Cauchy-Riemann equations 
hold a.e. where the partial derivatives of u and v exist, then there is a se­
quence of C-coverings, {Cn}, for which l im^^ ^ m | frmnf*(z)dz\ = 0 . 

PROOF. Define 1(C) =^2m\ frmf*(z)dz\. If for every point z of E there 
is a neighborhood N(z) such that for every closed subset of E in N, 
there is a sequence of coverings { Cn} for which lim^.^ I(Cn) = 0 , then 
by the Heine-Borel theorem there exists a sequence of coverings of E 
with the property mentioned in the theorem. The proof will be com­
plete therefore, if we show that there is such a neighborhood for each 
point of E. Let P be those points of E such that in every neighbor­
hood of z there is a closed subset of E for which there is no sequence 
of C-coverings, {Cn}, for which l i m ^ * I(Cn)=0. We shall assume 
that P is not empty and show that this leads to an absurdity. 

Let Pm (m — 1, 2, • • • ) be the points of P for which each of the ab­
solute values, 

| u*(x + k, y) — u*(x, y)\, | v*(x + k, y) — v*(x, y) |, 

| u*(x, y + k) — u*(x} y)\, \ v*(x, y + k) — v*(x, y) I 

is less than or equal to m\ k\ for | k\ ^ 1/m, k a real number. Since 
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w* and v* are continuous and P is closed, P m is closed. Since at each 
point of E, except for a denumerable set H, the partial dérivâtes are 
finite, P=y^jmPm+PH. By Baire's8 theorem, there is an isolated 
point of P in H, or for some integer N there is a point s0 in P , the 
center of a square S which contains only points of P which are in PAT. 
The former alternative is quickly dismissed as impossible; we pro­
ceed on the basis of the latter, and let F be any closed subset oî ES. 
Subdivide the sides of 5 into n equal parts, n>2N, and obtain 
the squares Sj (j = l, 2, • • • , n2). e being given, choose n so great 
that the squares Sj which contain points of F-P satisfy the in­
equality, mQ>2jSj—P -S) <e/S00N. If Rj is the least rectangle con­
taining P'Sj, and C is the covering ^j Rj, by Theorem 1, 1(C) 
<400 N^2J m(Sj-P'Sj) <e/2. Since I(R) is a continuous func­
tion of r, C may be extended by the addition of more small rec­
tangles, so that, if C' is the new covering, 1(C) remains less than e/2, 
but so that the points of F-P are inner points of the covering. The 
part of F not already covered (denote it by G) is such that its closure 
contains only points z of F for which there is some neighborhood N(z) 
with the property that every closed subset of Fin N can be C-covered, 
say by Cn(z) (n — \, 2, • • • ) and l ining I(Cn(z))=0. Let S(z) be a 
square with z as center entirely within N(z). Of these squares a finite 
number, k, cover G, and within each of these is a covering, C(z), of G 
for which I(C(z)) <e/2k. Hence G is C-covered by a covering C for 
which 1(C) < e/2. F is therefore C-covered by C+C' for which 
I(C+C') <e , so that So cannot belong to P , contrary to assumption. 
This completes the proof of Theorem 2. 

COROLLARY. If f(z), defined on the bounded closed set E and continu-
uous there, has a derivative at each point except at most a denumerable 
set, there is a sequence of C-coverings of E with E as their limit for which 
lim^oo fcnf*(z)dz = 0. 
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