ON AN INEQUALITY OF SEIDEL AND WALSH
LYNN H. LOOMIS

Introduction. In a recent paper! Seidel and Walsh introduced the
following concepts.

Let R be a Riemann surface (configuration) lying over the w-plane,
and let C, be a simply-connected region of R having the following
properties:

(a) C, contains precisely p points (counted according to branch-
point multiplicity) lying over some point of the w-plane.

(b) C, lies over the circle |‘w—wo| <r, and the boundary of C, lies
over the circumference Iw—wol =7,

It follows that C, contains precisely p points lying over every point
of |w——w0| <7, and in particular, p points @; lying over w,. Seidel
and Walsh name such a region a p-sheeted circle with centers w; and
radius r. Given a point @, of R, let 7, be the radius of the largest
p-sheeted circle in R with center @,; if none exists, let ,=0. We then
define the radius of p-valence of R at @,, D,(W,), as the maximum of
the 7, for n =< p.

Let w=f(2) =a1z+ - - - +a,2?+ap412?T 4 - - - be analytic in the
unit circle |z| <1 with |f(z)| <M, and let the Riemann surface R be
the image of |z, <1 under w=f(z). Let w, be the image of 2=0;
W, lies over w=0. Seidel and Walsh establish the following relation
between the first p coefficients of f(z) and the radius of p-valence,
D, (@), of R at w,.

T'here exist two constants, N, depending only on p, and A, depending
on p and M, such that

(1) MDy@) S 3| 4l < A,D,(@0) ]

Seidel and Walsh find for A, the value

A, = 24pMr, r=1-— 27
In this note we prove the following two statements concerning the
inequalities (1).

A. The exponent 2—? may be replaced by 1/(p+1) and this exponent
1s the best possible (for D,—0).
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We show, in fact, that there is a constant K, depending only on p
such that

¥4
(2) ZI an| =< KpMP/(p+l) [Dp(.wo)]l/(pﬂ),

n=1

and that there is a class of functions actually attaining the bound M
for which

D .
3) 3| an| = M2+ [D(a5g) |1+,
n=1

B. The coefficient N\, may be replaced by 1, and this value of the con-
stant is the best possible.

All proofs are based on the theorem of Rouché. We shall always

suppose, without explicit statement, that z is confined to the unit
circle | 2| <1.

Proof of (2). To prove (2) we assume a,>0 and let

) P = 3 e = a, 11 = — b,

from which we have
Y4
(5) | P) | = 2| an| =C.
n=1
We observe that |a,| < M, so that | P(z)| <pM, and therefore by the
Schwarz lemma,
(6) | /@) — P@| < (p + )M | 2]+
Now let
p
Py(r) =|a,,l H(r—lbn|) =cy+ -+ cpr?,
n=1

(7
C/

I

Dlenl =1lap| IT (4 4] 8a]).
n=1 n=1

Then by (4) and (7), |P(re“’)| = |P1(r) | Also, since ¢, is the same
polynomial in the ]b,-] as a, is in the b;, and since only plus signs
(or only minus signs) occur, we have [ c,.[ = | a,.| ,and C' = C. Together
with (7) this gives

r — I by

14+ 6]

(8) | P(re®) | = C

.

P
II
n=1
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Note that if Ib.—] >1 we only strengthen the inequality (8) if we re-

place ]b,-] by 1 in the quotients occurring there. But then (8) implies
that

y4
9) | Pre®) | = c2-»1] |7 — 8. |,
n=1
where b,/ =|bn| if Ib,,l =1, and b. =1 otherwise. Now choose any

positive real number xo<1. In the interval (0, x,) there is at least one
point 7; such that for 7 < p,

|1 — 0! | = x/27,

and therefore by (9),

(10) | P(rie) | = Cag(4p) 7,
and by (6) and (10)

l P(rlew)l - If(rlew) - P(rleiﬂ)] > ng(4p)_p—- xf;ﬂ(p + 1DM.

This expression is maximum for xo= Cp/(4p)?(p+1)2M, its maximum
value being C?+1/M?Kr+1 where K = (p+1)((p+1)/p)?/@tD (4p)>.

The polynomial P(z) has # zeros in [z[ =r with #=p. Therefore
by Rouché’s theorem, f(2) assumes in ] z] =r every value in | 'wl
= Cr»+1/K»+1M» precisely »# times. Therefore D,(0) = Cr+l/Kr+1)[7;
that is,

Xp:l anl < KMP/(p-H)[Dp(())]l/(p-I—I)

n=1

as was to be proved.

In the above proof we have assumed that ¢,>0. If ¢, =0 the proof
is valid for some # =< p, and p can be reintroduced in the later stages,
say in equation (8), where the product can be taken over p factors if
some of the [ bnl are allowed to vanish.

Proof of (3). We prove (3) by considering the class of functions

a— Mz

(11) f(z) = Mz U — o
(12) = qz? ———————————«1 — (Mz/e)
N 1 — (az/M)

where a < M. These functions have been studied by the author in a
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previous note.? From (11) it is clear that If(z)l =M in lzl =<1, and
that the bound is attained for z=1. It is also evident from (11) that
the minimum of If(z)l on |z| =r<a/M occurs at z=r. Thus
]f(z)| =f(r) for |z| =r<a/M. By Rouché’s theorem f(z) covers the
circle |w| <f(r) precisely p times in |z| <r, since f(2) =0 has p roots
in this circle. By Rolle’s theorem f’(2) vanishes for some 7, between
r=0 and r=a/M. Then every value of |'w] =f(ro) except w=f(ro) is
assumed precisely p times in |z| =ro, and w=f(r,) is assumed p+1
times. Therefore D,(0) =f(r,). But by (12)

(13) D,(0) = f(ro) < a(ro)? < ala/M)? = ar*t/M>,

Also by (12), the first term in the expansion of f(z) is az? so that the
sum of the moduli of the first p coefficients is ¢. Thus by (13)

i] a.| = a > M?I@+[D,(0) ] D

n=1
which is the desired inequality (3).

The coefficient \,. We have left to prove that A\, can be taken as 1;
in other words, that

D,0) £ 3| au| = C.

As before, let P(2) =aiz+ - - - +a,2?, and suppose that D,(0) > C.
Then [f(z)| = C defines an analytic Jordan curve T in |z| <1 and T
contains the origin in its interior. On T' we have IP(z)I <C= ]f(z)].
Therefore by Rouché’s theorem f(z) — P(2) and f(z) have the same
number of zeros interior to I'. But f(2) has at most p zeros inside T’
since the image of the interior of I' under f(2) is an %n-sheeted circle
with #<p. And f(2) — P(2) =a,12?t'+ - - - has at least p+1 zeros
interior to I'. By this contradiction we see that D,(0) < C as we wished
to prove.

This result is trivially the best possible, for if f(z)=az?, then
D,(0)=a=C=M.
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Two problems were considered in this note, One was the problem of the present
paper for the class of functions whose first non-vanishing coefficient is a,. The second
was the problem of determining for this restricted class of functions the largest circle
|| <7 (the radius depending on p, M and |a,|) in which all the functions are at most
p-valent. The present note does not treat the corresponding problem for the more
general class of functions considered here.



