
MEASURE AND OTHER PROPERTIES OF A HAMEL BASIS 

F. B. JONES 

A Hamel basis1 is a set a, ô, c, • • • of real numbers such that if x 
is any real number whatsoever then x may be expressed uniquely in 
the form aa+(3b+yc + • • • where a, j8, 7, • • • are rational numbers 
of which only a finite number are different from zero. Since each of 
these sums is formed from a finite number of nonzero terms and the 
coefficients a, /3, 7, • • • are rational and therefore form a countable 
set, it seems intuitively plausible that not only should the basis set 
be of the same power as the continuum but in some way be of the 
same "thickness" as the continuum. However, this intuitive feeling 
is seemingly contradicted by the only known results along this line, 
namely: the inner measure of a Hamel basis is zero and its outer 
measure may also be zero.2 Nevertheless, this intuition is justified to 
some extent by Theorems 2, 4, and 5. A natural question arises: In 
order for a set of real numbers to contain a Hamel basis, what is both 
necessary and sufficient? For a certain family of sets (including the 
Borel and analytical sets) this question is answered in two ways. Cer­
tain other properties of a Hamel basis are investigated, the most 
interesting being an example of a Hamel basis which contains a non-
vacuous perfect set. Finally, some rather curious discontinuous solu­
tions of the equation ƒ(x) +ƒ(y) =f(x+y) are given. 

Measure, No Hamel basis of positive exterior measure is measur­
able.3 The next few theorems show this to be true also of certain trans­
forms of every Hamel basis. 

DEFINITION. If M is a set of real numbers, by T(M) is meant the 
set of all numbers x' such that x' =x + (y' —y), where x, y, and y' be­
long to M. 

With M considered as a linear set, T(M) is the sum of all transla­
tions of M which intersect M. For convenience, T[T(M)] is abbre­
viated T2(M), T[T2(M)] is abbreviated Tz{M)y and so on and 
T°(M)=M. 

Presented to the Society, September 2, 1941 ; received by the editors September 8, 
1941. 

1 G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktional-
gleichung:f{x-\-y)—f{x)-\'f{y), Mathematische Annalen, vol. 60 (1905), pp. 459-462. 

2 W. Sierpinski, Sur la question de la mesurabilitê de la base de M. Hamel, Funda-
menta Mathematicae, vol. 1 (1920), pp. 105-111. 

3 Ibid. 
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THEOREM 1. If H is a Hamel basis, then for each positive integer n, 
miTn(H)=0* 

PROOF. Suppose, on the contrary, that for some positive integer n, 
miTn~1{H) > 0 . Let a and b denote two numbers of H. Since the set 
of distances of the set Tn~~l(H) contains an entire interval with its 
left end at zero,5 Tn(H) contains an interval V whose midpoint is b. 
Since a/b is irrational and a is not zero, there exists a rational number 
r which is not an integer such that ra belongs to Vand hence toTn{H). 
But every number of Tn(H) can be expressed in the form niXi-\-n2X2 
+W3X3+ • * * where x\, #2, #3, • • • belong to H a n d n\, n^, n%, • • • are 
integers of which only a finite number are different from zero. This is 
contrary to the properties of H. 

THEOREM 2. If H is a Hamel basis, then for some positive integer n, 
meT

n(H)>0. 

PROOF. Suppose, on the contrary, that for each positive integer n, 
mTn(H)=0. Hence m^Tn(H)=0. Let M0 d e n o t e £ T n ( H ) , and let 
a denote a fixed number of MQ. Evidently every number of the form 
a+n\(b — a)+nî(c — a)-\-nz(d — a)+ • • • (where b, c, d, • • • belong to 
H and n\, n<i, n$, • • • are integers of which only a finite number are 
different from zero) belongs to Mo- Hence the set of all numbers of 
this form are of measure zero. So the set of all numbers of the form 
a-\-ni(b— a)+n2(c — a)+ns(d — a)+ • • • +n0a (where n0 is an integer 
and all other symbols have the same meaning as before) is of meas­
ure zero. Now any real number x can be expressed in the form 
aa+fib+yc+ • • • (where a, /3, 7, • • • are rational numbers of which 
only a finite number are different from zero) and hence there exists 
an integer q (which depends on x) such that qa, g/î, qy, • • • are in­
tegers of which only a finite number are different from zero. Conse­
quently, qx is of the form a+ni(b — a)+n2(c — a)+ns(d — a)+ • • • 
+noa. I t follows that the set of all real numbers x is of measure zero, 
which is false. 

DEFINITION. If M is a set of real numbers, then D(M) denotes the 
set of all numbers x—y where x and y belong to M and x^y. The set 
D(M) is called the set of distances of the set M.* 

4 Throughout this paper, if Q is a set, miQ and meQ denote the interior measure 
and exterior measure, respectively, of Q and mQ denotes the measure of Q if measur­
able (in the sense of Lebesgue). 

6 H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Funda-
menta Mathematicae, vol. 1 (1920), pp. 93-104. 

6 Steinhaus, loc. cit. 



474 F. B. JONES [June 

THEOREM 3. If H is a Hamel basis, then for each positive integer n, 
miDn(H)=0. 

Theorem 3 may be established by substituting D for T in the proof 
of Theorem 1. 

THEOREM 4. If H is a Hamel basis, then for some positive integer n, 
meD

n(H)>0. 

PROOF. Suppose the contrary. Let N=YJ?Dn(H). Then mN = 0. 
Let Q denote the set of all points of H which are limit points of H 
from both sides, and let M denote a countable subset of H such that 
(1) M contains H—Q and (2) every point of H—M is a limit point 
of M. I t follows that each point of H—M is a limit point of M from 
both sides. Let x denote a real number. Then x is of the form 
aa+f3b+yc+ • • • (where a, b, c, • • • belong to H and a, /3, y, • • • 
are rational numbers of which only a finite number are different from 
zero). Hence there exists an integer q such that qx is of the form 
nia+n2b+nsc~\- • • • (where nh n2, nd, • • • are integers of which only 
a finite number are different from zero). So qx is of the form ^{etXi 
(where for each i, i — 1, 2, • • • , j , Xi belongs to H and d is ± 1). For 
each integer i, i — \, 2, • • • , j (j is finite and depends on x), there 
exists a number yi of M such that ^{ei(xi—yi) belongs to N.1 Hence 
qx = x+Y^{eiyi where x belongs to N. Since there are only countably 
many numbers of the form ^{e<y», it follows that the set of all real 
numbers x is of measure zero, which is a contradiction. 

LEMMA 1. If M is a set of numbers and every number of some num­
ber interval V can be expressed in the f or m aa+t3b+yc+ • • • (where 
a,b, c, - - - belong to M and a, /3, 7, • • • are rational numbers of which 
only a finite number are different from zero), then M contains a Hamel 
basis. 

Lemma 1 may be established by well-ordering M and applying 
Hamel's argument to this well-ordering. 

THEOREM 5. If M is a set of real numbers and for some positive in­
teger n, either m{Tn(M) > 0 or miDn(M) > 0 , then M contains a Hamel 
basis. 

Theorem 5 follows from Lemma 1 and one of Steinhaus* theorems 
on the set of distances of a set.8 The condition in Theorem 5 under 

7 This can be done by first choosing ^i so that ei(xi—yi) ^ 0 . This makes ei(xi—yi) 
belong to D(H). If it is zero, choose y% so that e^x^—y^) ̂ 0 ; but if it is positive choose 
yi so that ea(x2—^2) ^ 0 but ei(xi—y\)-\-e%(x<z—y2) ^ 0 . This makes ei(#i—yO+^fe—^2) 
belong to D2(H). Continue this process. 

8 Loc. cit., Theorem 8, p. 99. 
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which the set M contains a Hamel basis is not necessary. This can be 
seen from Theorems 1 and 3. 

EXAMPLE 0. The Cantor discontinuum9 contains a Hamel basis, be­
cause its set of distances contains the interval from zero to one. 

DEFINITIONS. Let FT denote the family of all sets M of real numbers 
such that for infinitely many different positive integral values of n, Tn(M) 
is measurable; and let Fn denote the family o f all sets M of real numbers 
such that for infinitely many different positive integral values of n, 
Dn(M) is measurable. 

THEOREM 6. If M is a set of the family FT, then in order that M con­
tain a Hamel basis it is necessary and sufficient that for some positive 
integer n, mTn{M) > 0 . 

THEOREM 7. If M is a set of the family FD, then in order that M con­
tain a Hamel basis it is necessary and sufficient that for some positive 
integer n, mDn(M)>0. 

LEMMA 2. If M is an analytical set of real numbers, then both T(M) 
and D(M) are analytical sets. 

PROOF. Being an analytical set of real numbers, M is the set of 
values of a function fi(x) of a real variable, defined and continuous in 
the set of all irrational numbers.10 Furthermore, D(M) is analytical11 

and the set N consisting of all real numbers x such that either x or — x 
belongs to D(M) is an analytical set. Hence N is the set of values of 
a function fz(x) of a real variable, defined and continuous in the set 
of all irrational numbers. Let f{x, y) ==/i(x) +fî(y) where x and y are 
irrational numbers. Then T(M) is the set of values of f(x, y) and 
fix, y) is defined and continuous in the set of all points of the number 
plane whose coordinates are both irrational numbers. I t follows that 
T(M) is analytical.12 

Perfect sets, analytical sets. Since every analytical set is measur­
able,13 the following three theorems may be easily established using 
Lemma 2 and Theorems 6 and 7. 

9 The subset of the interval from 0 to 1 (of real numbers) remaining after deleting 
in succession every middle-1/3 segment (open interval). 

10 W. Sierpinski, Introduction to General Topology, The University of Toronto 
Press, Toronto, 1930, translated by C. C. Krieger, Theorem 73, p . 145. 

11 W. Sierpinski, Sur Vensemble de distances entre les points d'un ensemble, Funda-
menta Mathematicae, vol. 7 (1925), pp. 144-148, p . 146 in particular. 

12 W. Sierpinski, General Topology, loc. cit., Theorem 89, p . 185. 
13 N. Lusin, Leçons sur les ensembles analytiques, Gauthier-Villars, Paris, 1930, 

p. 152. 
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THEOREM 8. In order that an analytical set A of real numbers shall 
not contain a Hamel basis it is necessary and sufficient that for each 
positive integer n, both mTn(A) and mDn(A) be zero. 

THEOREM 9. No Hamel basis is an analytical set. 

THEOREM 10. If an analytical set M is a subset of a Hamel basis, 
then for each positive integer n, both mTn(M) and mDn(M) are zero. 

THEOREM 11. Suppose that f(x) is a discontinuous real function 
which is defined for all real values of x and which satisfies the equation 
f(x)+f(y) =f(%-\-y)> If f(x) ^ bounded over the analytical set K of real 
numbers, then for each positive integer n, mTn(K) = 0 . 

PROOF. Since ƒ (x) is bounded over K, there exists a positive number 
B such tha t \f(x) \ <B if x belongs to K. I t follows from the elemen­
tary properties of ƒ(x) (which are imposed upon it by the functional 
equation) that for any positive integer n, \f(x) | <3nB if x belongs to 
Tn(K). Suppose that for some integer n, mTü(K)7*0. Since TÜ(K) is 
analytical, it is measurable, and hence, is of positive measure. Then 
TÛ+1(K) contains an interval. Since ƒ (x) is bounded over this interval, 
by one of Darboux's theorems it must be continuous.14 This is a con­
tradiction. 

COROLLARY 1. If the discontinuous solution f(x) of the functional 
equation f(x)+f(y)=f(x+y) is continuous in an analytical set K of 
real numbers, then f or each positive integer n, mTn{K) = 0. 

COROLLARY 2. Suppose that A is an analytical subset of the plane 
image of a discontinuous solution of the equation f(x)+f(y) =f(x+y) 
and that K is the projection of A onto the x-axis. Then for each positive 
integer n, mTn(K) = 0 . 

THEOREM 12. No discontinuous solution of the equation f (x)+f (y) 
=f(x-\-y) is continuous in an analytical set which contains a Hamel 
basis. 

Theorem 12 follows immediately from Theorem 8 and Corollary 1. 

Remarks and examples. Burstin showed the existence of a Hamel 
basis H which intersects every perfect set of real numbers.15 I t fol-

14 Darboux, Sur la composition des forces in statique, Bulletin des Sciences Mathé­
matiques, vol. 9 (1875), p. 281. 

15 C. Burstin, Die Spaltung des Kontinuum in c in L Sinne nichtmessbare Mengen, 
Sitzungsberichte der Akademie der Wissenschaften, Vienna, Mathematisch-natur-
wissenschaftliche Klasse, Abt. lia, vol. 125 (1916). 
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lows that H does not contain a perfect set. But every uncountable 
analytical set contains a perfect set.16 Consequently, this particular 
Hamel basis H does not contain an uncountable analytical set. This 
example and Theorems 9 and 10 might lead one to conjecture that 
no Hamel basis whatsoever contains an uncountable analytical set. 
That this conjecture would be false is shown by the following ex­
ample. 

EXAMPLE 1. There exists a Hamel basis which contains a perfect set.17 

CONSTRUCTION. Let rh r2, r%, • • • denote a simple well-ordering of 
the rational numbers such that fi = 0. Let In denote a closed interval 
of real numbers not containing zero. The interval In contains two 
intervals 72i and 722 such that (1) J2i precedes J22 and (2) no number 
of the form #i#i+W*;2 except the forms xi or #2 belongs to 72i+^22, 
where xi, X2&I21+I22 and where ni = rj, ifj = l or 2. Likewise I21 con­
tains two intervals /31 and ƒ32, and 722 contains two intervals J33 and ƒ34 
such that (1) /31 and J33 precede ƒ32 and 734, respectively, and (2) no 
number of the form niX\+n2X2+nzXz except the forms xi, x2, or xz be­
longs to ^Izn where X\, X2i XZX!Z / jlSn and where wt=r3-, i, j = l, 2, or 
3. This process may be continued. For each positive integer k, let G& 
denote the collection of mutually exclusive intervals Iku Ik2, • • • , Ikq* 
where q = 2k~1. For each &, each element of G& contains two elements 
of Gk+i and if X\y X2f f Xk denote numbers of <?&*, then no number 
of the form J^*niXi except the form Xi belongs to G/f, where n< = r$, 
*\ i = l, 2, • • • , k.1* Now let M denote f[?G?. Evidently M i s a per­
fect set such tha t if % is a number of Af, thert x^aA + / 3 . B + Y C + • • • 
where -4, J3, C, • • • are numbers of M— x and a, /3, 7, • • • are ra­
tional numbers of which only a finite number are different from zero. 
I t follows from this that if x is a real number which can be expressed 
in the f o r m a l +(3B+yC+ • • • where ^4, J3, C, • • • belong to M and 
a, j8, 7, • • • are rational numbers of which only a finite number are 
different from zero, then it can be thus expressed in only one way, 
that is, the form is unique. 

Let T denote a well-ordering of the real numbers not belonging to 
M and let a denote the first number of T which is not of the form 
aA+j3B+yC+ • • • where A, B, C, • • • belong to M and a, j8,7, • • • 
are rational numbers of which only a finite number are different from 

16 Lusin, loc. cit., p . 151. 
17 R. L. Swain, in a conversation with me, demonstrated the existence of a perfect 

set whose set of distances contains no rational number. His method of construction 
forms the kernel of the one that I use here. 

18 G*h denotes the sum of the elements of G^ 



478 F. B. JONES [June 

zero. Let b denote the first number of T which is not of the form 
aA+(3B+yC+ • • • where A, B, C, • • • belong to M+a. This proc­
ess may be continued. I t follows from Hamers argument that 
M+a+b+c + • • • is a Hamel basis.19 

Since, from Theorem 11, no discontinuous (real) solution of the 
functional equation f(x)-\-f(y) =f(x+y) can be continuous at any 
point or continuous in any set of positive measure, could such a dis­
continuous solution be continuous in some perfect set? And could its 
image in the number plane (the graph of 3> =ƒ(#)) at the same time 
be connected? Example 2 shows tha t the answer is yes. 

EXAMPLE 2. There exist a discontinuous (real) solution of the func­
tional equation f (x)+f(y) =f(x+y) and a perfect set M of real numbers 
such that (1) f(x) = 0 if x belongs to the perfect set M and (2) the plane 
image off(x) is connected. 

CONSTRUCTION. Let M denote a perfect subset of a Hamel basis H 
such that H— M contains a perfect set. For each number x of M, let 
f(x) be defined to be zero. Define the function f(x) for each of the 
numbers of H—M in such a way so that if Q is a continuum in the 
number plane not lying wholly in a vertical line, then for some num­
ber x of H—M, the point (rx, rf(x)) belongs to Q.20 Now if x is any 
number not belonging to H, x=aa+Pb-\-yc + • • • where a, &, c, • • • 
belong to i f and ce, |8,7, • • • are rational numbers of which only a finite 
number are different from zero. Letf(x) =af (a) +fif(b) +yf(c) + • • • . 
It follows from Hamel's argument that ƒ(x) satisfies the functional 
equation.21 Furthermore, ƒ(#) has the following properties: (0) f(x) is 
totally discontinuous but (1) f(x) is zero for all numbers in the perfect 
set M and (2) the plane image oif(x) is connected.22 

In order for the plane image / of any discontinuous solution of 
ƒ(#)+ƒ60 =f(x+y) to be connected, i" must intersect every23 con­
tinuum in the plane which does not lie in some vertical line. However, 
/ need not intersect every perfect subset of the plane not lying in the 
sum of a countable number of vertical lines, for the image of f(x) in 
Example 2 does not contain any point of the line y = 1 whose abscissa 
belongs to M. So by virtue of the fact tha t J may be connected and 

19 G. Hamel, loc. cit. M-\-a-\-b-\-c-\- • • • denotes the sum of the sets, M,ayb,c, • • •. 
20 F B. Jones, Connected and disconnected plane sets and the functional equation 

f(x)+f(y) -/(*+y)» this Bulletin, vol. 48 (1942), pp. 115-120, Theorems 2 and 4; r is 
rational. 

21 G. Hamel, loc. cit 
22 F. B. Jones, loc. cit. 
23 Ibid., Theorem 2. 
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still contain a perfect set not lying in the sum of countably many 
vertical lines, it follows that I need not intersect every such perfect 
set. Since, by Theorem 11, Corollary 2, / can not contain a perfect 
set whose projection on the #-axis is of positive measure, one might 
suppose that / must intersect every such perfect set in order to be 
connected. The following example shows this supposition to be false. 

EXAMPLE 3. There exists a discontinuous solution of the equation 
ƒ0*0 ~\-f(y) —f(%+y) such that (1) the image I off(x) in the number plane 
E is connected but (2) the intersection of I with the x-axis is exactly the 
set of rational numbers. 

Two lemmas are necessary. 

LEMMA 3. Suppose that M is a bounded, closed subset of the number 
plane. If uncountably many horizontal lines intersect M in an uncount­
able set, then each of c horizontal lines intersects M in an uncountable 
set.2* 

PROOF. Let E denote the number plane. Let W denote the set 
of all points w of the y-axis for which there exist sets Mw such that 
(1) Mw is a subset both of a horizontal line in E through w and 
of M and (2) every point of Mw is a point of condensation of Mw from 
both sides. There exists a pair of vertical lines Lu and Lu (Lu being 
to the left of L12) and an uncountable subset W\ of W such that for 
each element w of Wi, Mw contains points between Lu and L12, to the 
left of Lu and to the right of L12. Let P u denote a point of M lying 
between Lu and L12 such that for uncountably many different ele­
ments w of Wi, Mw is a subset of a horizontal line lying above P u 
in E and for uncountably many elements w of Wi, Mw is a subset 
of a horizontal line lying below P u in E. Let Wit and Wr denote the 
set of all of those elements w of W\ for which Mw is on a line above 
P11 and below Pu, respectively. Select one of the sets W£ and W\ and 
denote the selection by W\ . Then there exist vertical lines L21, L22, L23, 
and L24 having that order from left to right (with Pu between L22 

and L23) and an uncountable subset W2 of Wi such that for each w 
of 1̂ 2, Mw has points to the left of L21, between L21 and L22, between L22 
and the vertical line through Pu, between this line and L23, between 
L23 and L24, and to the right of L24. Let P21 and P23 denote two points 
of M which lie on the same horizontal line such tha t uncountably 

24 c is the cardinal number of the continuum. I t would follow from this lemma tha t 
any closed subset of the plane which cannot be covered by a countable collection of 
horizontal and vertical lines can be covered only by a collection of horizontal and 
vertical lines which contains a t least c lines. 
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many elements of W2 He above and uncountably many elements of W<t 
lie below this line, denoting them by WJ~ and Wf. Select one of the 
sets W£ and Wf and denote the selection by W}. This process may 
be continued and an infinite sequence of points Pu, JP2i, P23, Pz\, P33, 
Pz$, Pziy • ' ' obtained whose limiting set Q is uncountable and lies 
both in M and in a horizontal line. Since for each n1 n = 2, 3, 4, • • • 
there are two selections possible in the selection of W*, there are 2^° 
such limiting sets of which no three are identical. Hence there are c 
different such sets Q. 

LEMMA 4. No compact continuum M lying in the number plane which 
is not wholly in a vertical line and whose common part with every hori­
zontal line is totally disconnected is a subset of the sum of less than c 
vertical and horizontal lines. 

Lemma 4 may be established by an indirect argument with the help 
of Lemma 3 and the fact that an uncountable closed plane set con­
tains c points. 

CONSTRUCTION OF EXAMPLE 3. Let T denote a well-ordering of type 
120 (120 is the smallest ordinal having c ordinals less than it) of the set 
of all nondegenerate compact subcontinua of E not lying in a vertical 
line and let xi, #2, #3, • • • , xm xu+i, ' ' ' » %*> * * • > %<®o, denote a 
well-ordering of a Hamel basis H such that x i = l and H contains a 
number of every perfect set of real numbers. Let yi—fixi) = / ( l ) = 0 . 
If r is a rational number, let f(r) = r / ( l ) = 0 . Suppose that , for each 
ordinal z <z0 < O0, ƒ(#*) is defined to be a number yz. Then if 
z<z0l f(x) =^2rzyei z<z0, where rz is a rational number and not zero 
for only a finite number of different values of z. Let Ieo denote the 
image of ƒ(z) as defined so far. Let MZo denote the first element of T 
which contains no point of IZQ. Let Z\ denote the smallest ordinal such 
that (1) f(xMl) is not defined so far and (2) there exists a number yZl 

such that (xZv yei) belongs to MZo and yZl is not the ordinate of any 
point of IZr Since z < Q0, the existence of Zi may be established with 
the help of Lemma 4 and the theorem that every uncountable inner-
limiting set of real numbers contains c mutually exclusive perfect sets. 
Then let f(xZl) =yzi. If z is an ordinal less than z\ such that for each 
ordinal z < z, f(xz) is defined to be yz, then let ƒ(#*) be a real number y g 
such that y2 is not rZlyZl+^rzyzy z<z, where rz is a rational number 
which is different from zero for only a finite number of different val­
ues of z and rZl is a rational number. 

This completes the induction in the definition of ƒ(x) if x belongs 
to H. If x is any real number, then x =^rzXg, where rz is a rational 
number which is different from zero for only a finite number of differ-
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ent values of z. This expression for x being unique, ƒ(x) is defined to be 
^rzyz. By Hamel's argument25 ƒ(#) satisfies the equation ƒ(x) +ƒ(y) 
=f(x+y). Obviously the image I of ƒ(x) intersects every compact 
subcontinuum of E not in a vertical line and hence intersects every 
such subcontinuum of E whether compact or not. Hence I is con­
nected.26 Suppose that for two different numbers a\ and #2, ƒ (#1) = ƒ (a2). 
But ai=^2rizxz and #2 =X/2«#«, where r\z and r2z are rational numbers 
which are different from zero for only a finite number of different val­
ues of z. Hence ^rlzyz =y^2r2zyz. Let z be the largest value of z such 
that riz — r2z7*0. Then :ys=2/y«(f2* — fi«)/(ri* —n**), z < s . This however 
is impossible if z>\. Hence ru~r2z = 0 if z>l and 01 = 02 = 1̂1 —^21. I t 
follows from this that if L is a horizontal line intersecting I at the 
point (x, y) then IL is the set of all points (#+r , y) where r is ra­
tional. 

T H E UNIVERSITY OF TEXAS 

26 Loc. cit. 
26 See Footnote 23. 


