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finally an analytic r-cell contained in gM\W. Hence g contains a nu-
cleus of G and hence g =G, a contradiction which proves the theorem.?

CoLuMBIA UNIVERSITY

3 We have proved, incidentally, that if an everywhere dense subgroup g of a simple
Lie group G, (r>1) contains an analytic arc, then g=G.

VECTOR SPACES OVER RINGS
C. J. EVERETT!

1. Introduction. Let M =u K+ - - - +u.K be a vector space (lin-
ear form modul [5, p. 111]) over a ring K = {0, a, B, - - - ; € unit ele-
ment}. By a submodul N <M is meant an “admissible” submodul:
NK =N. Elements #1, - - -, v, of a submodul N form a basis for N
(notation: =K+ - - - 4+9,K) in case Y v,0;=0 implies a;=0,
4=1, - - -, n, and if every element of N is expressible in the form
Zviai, a; K. The equivalent formulations of the ascending chain
condition for submoduls of a vector space, and for right ideals of a
ring will be used without further comment [5, §§80, 97].

2. Basis number, linear transformations. We remark that the fol-
lowing holds.

(A) The ascending chain condition is satisfied by the submoduls of a
vector space I over K if and only if it is satisfied by the right ideals of K.

An infinite chain of right ideals 11 <1s< - - - in K yields an infinite
chain of submoduls %1ty <2< - - - in M. The other implication is
provedin [5, p. 87].

[By using a lemma due to N. Jacobson (T heory of Rings, in publica-
tion) Theorem (A) and the corresponding theorem for descending
chain condition are easily proved in a unified manner. |

Linear transformations of M on I are given by u;—u! = u.ai;.
Write (uf, -+ -, tm )=(u1, - - -, n)d, 4 =(a;;). Under u;—u/}, let
Mo—0. Thus M/Me=MA = IMN. Clearly My=0 if and only if 4v=0
implies v=0, v an m X1 matrix over K, and M4 =M if and only if
there exists an m Xm matrix R with AR=1, the identity matrix.

Possibilities (i) Mo=0 and MA =M; (i) Mo>0 and M4 <IN;
(iii) Mo=0 and MA <M are familiar. The possibility of (iv) Me>0
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and M4 =M is demonstrated later in (D), thus settling a question
raised by van der Waerden [5, p. 115].

Case (iii) implies an infinite descending chain in M, case (iv) an
infinite ascending chain in M.

(B) The set (v, -« -, vn)=(u1, - - -, um)d, n<m, forms a bastis for
M=K+ - - - +u, K if and only if the m Xm matrix (A0) has a right
inverse: (AO)R=1, and Av=0 implies v=0, v an n X1 matrix over K.

This is an immediate consequence of the basis definition.

(C) If the right ideals of K satisfy the ascending chain condition,
every basis of a vector space W=u K+ - - - +u.K has m elements.

For a matrix (40) of the type in (B) defines a linear transformation
of type (iv) violating the chain condition in K.

Hence with every vector space I over a ring K with ascending
chain condition for right ideals is associated a unique basis number
b(M). K a quasi-field is a trivial special case.

(D) If K is the ring of all infinite matrices over a field, with only a
[finite number of nonzero elements in each row and each column, then the

vector space M=u K+ - - - +u, K, m>1, has a basis of one element:
M =uK. Thus there exist, for arbitrary m, 1 Xm matrices (cu, * - * , Qn),
By - -+, Bw) over K such that (ay, - -+, an)' By, - - -, Bw) =1, the
m X m identity matrix, with a;8=0,1=1, - - -, m,BEK implying §=0.2

Let 8; be the vector (0, 0,---, 0, 1, 0, ---)" with 1 in the
ith position from above. Matric elements of K are defined by
their column vectors; let the unit of K be e€=(81, 02, - - -) and

C(1=(0, 511 01 62y 07 53, vt ): (X2=(51, Oy 62, 0; 53: Oy 64’ A )y a3=oz1',

as=ad . Let
)
as 0 0 O
Then AB=1, and a8 = =0 implies 8=0, BEK. Let
I 0
()
0 4

where I is the (m—2) X (m —2) identity matrix. It follows from (B)
that u, - -+, %m—g, v form a basis for I, where (41, - + -, Um—2, ¥, 0)

2 4’ means 4 transpose.
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=(u1, * - -+, #m)A1. The induction is obvious, and I has a basis of a
single element. The theorem follows from (B).

3. Vector spaces over right principal ideal rings. We now remark
that the following holds:

(E) If M=w K+ - - - +unK is a vector space over a ring K in which
every right ideal v >0 is of type poK, where poe =0, a EK implies o =0,
then every submodul N, 0 <N =M, has a basis of n elements, n =m.

This is only a trivial modification of the van der Waerden result
[5, pp. 88, 121], appropriate since the condition subsequently also ap-
pears to be necessary (see (F)).

LemMA 1. If every submodul N, O<KN=ZM=w K+ - - - +unK has
a basis of n =m elements, and t is a right ideal of K, 0<t =K, then the
submodul M=ut\J - - - Junt, consisting of all sums Zuipi, piEr, has
a basis ui, + ¢ ¢, Umy With mt=uaK, 1=1, - - -, m, and u; 1s a basis
for usr.

ForO<ugt=uaK+- -+ +uim:K,1 =n;<m,and N=uxt\J - - - Ju,t
is a submodul for which the u,; together form a basis of )_#; elements.
The hypothesis of the lemma implies the ascending chain condition
in M, and hence in K (by (A)). Hence by (C) the basis number for
Nis unique and m =Y n;=m, n;=1,i=1, - - - , m. Thus ur=wu;-K.

(F) Let M=u K+ - - - +u K be a vector space over K. Then every
submodul N, 0 <N=IN, has a basis of n=m elements, if and only if
every right ideal t>0 in K 1s of type poK, where poa=0, « €K, tmplies

a=0.

For if t>01is a right ideal of K, by the lemma, w1t =unK, %11 =1u1py,
poEr. Then u;t =u1p0K and t=poK. Moreover poa =0 implies uy;6 =0
and a=0.

Now suppose M=u K+ - - - +u,K is a vector space over a ring
K of the type in (F). To every submodul 9%, 0 <N < I, corresponds a
unique basis number 5(N). Define 5(0) =0.

(G) If M=K+ - - - +u,K is a vector space over a ring K of the
type in (F), the basis number b(N), 0 =N <IN, is a positive modular
functional [1, p. 40]:

M1. 5(AIB) +bo(ANB) =b(A) +5(B),

M2. AZB =M implies b(A) <b(B).

M2 is clear from (F). A proof of M1 may be made by induction on
b(A). We treat here only the following case:
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Let K be a (noncommutative) domain of integrity in which every
right ideal is principal.? The vector space M=u K+ - - - +u,K may
then be regarded as imbedded in the vector space M*=u K+ - - -
+u.K where K is the quotient quasi-field of K. The existence of K
follows from theorems developed by Ore [3, p. 466] and a proof by
Teichmiiller [4] that the least common multiple of nonzero elements
in such a K is not zero. The correspondence

WNWR=uK+ - +02,Kk->N*=0yK+ -4+, K

is a well-defined correspondence on the lattice L of all K-submoduls
of M to the entire lattice L of K-submoduls of M*, (since N* is inde-
pendent of the M-basis). Observe that 5(N) =b(N*) as a submodul
of M*. For the K-independence of a basis (v1, - - -, v,) of 9 implies the
K-independence of vy, - - - , v,: Let >_v,a: =0, & =a;/B8:EK (Ore quo-
tient) ; if u is the (nonzero) least common multiple of theB;, > v:au=0,
and a;uE K by the Ore theory referred to. Hence a;u=0, and &;=0,
i=1,---,n.

It is trivial to verify that:

(1) A=Y implies A*=B*.

(2) (AUB)* =A*UB*.

(3) (UANB)* =A*NB*.

For example, in (2) (AUYB)* = A UB* follows from (1). But every
element in (A\UB)* is a K-form in a K-basis of AU, hence is in
A*\UB*. Since b(A*) is the dimension of A* over K, it follows that
b(%) is a positive modular functional on L.

We may now apply the theory of such functionals [1, p. 42, Theo-
rem 3.10] to show that §(2, B) =b(AUB) —b(ANY) is a quasi-metric
onL:

(4) 6(YU,B)=0, 6(A, A)=0.

(5) o(A,B)+6(®B, €)=Y, €).

The relation A~YB defined by 8(A, B) =0is an equivalence relation,
and the correspondence %— [¥], the equivalence class containing 9,
is a lattice homomorphism of L onto the metric lattice L’ of equiva-
lence classes. For want of a name, we call L’ the metric homomorph
of L. However, in the correspondence (y), °A* =8* if and only if A~B.
For, if A~B, 6(AIB) =b(ANY), and A*UB* =Y* =B* = A*NB*,
since all these have the same dimension over K. Conversely, if

A* =B*, then (AUB)* =A* = (ANB)*, b(AUB) =b(ANB) and A~B.
(H) If K is a right principal ideal domain of integrity, quotient field

3 For the elementary divisor theory of matrices over such domains, and references
to the literature, see [2].
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K, then the basis number b(MN) is a positive modular funciional on the

lattice L of submoduls of M=u K+ - - - +unK, and the metric homo-

morph L' of L is lattice isomorphic with the lattice of submoduls of
*=uy K+ - - - +unK.

4. Vector spaces over quasi-fields. We now typify vector spaces
over quasi-fields by (I) and (J).

REMARK. 4 ring K= {0, &, - - - | with unit €, whose only right ideal
t>01s K, 75 a quasi-field.

Let a#0. Then 0<aK =K, aff=e¢. The right annihilator (right)
ideal t of « is (0), for t>0 implies r=K, and ae=a=0. Hence
a(Ba—e)=afa—a=a—a=0and Ba=c¢.

(I) L M=u K+ - - - +unK be a vector space. Then every submodul
N, 0<N <IN, has a basis of n <m elements, with N <M implying n <m,
if and only if K is a quasi-field ; that is, the modular functional b(N) on a
vector space over a ring K of the type in (F) is sharply positive [1, p. 41]
if and only if K is a quasi-field.

These are well known properties of a vector space over a quasi-
field. If they hold, then by Lemma 1, the existence of a right ideal 1,
0 <t <K implies N =ut\U - - - Un,t <M with 6(N) =b(M), contrary
to hypothesis. Hence (I) follows from the remark above.

(J) Let M be a vector space over a ring K of the type in (F). Then M
satisfies the descending chain condition if and only if K is a quasi-field.

For rings of this type, the descending chain condition in I and
sharp positiveness of 5(N) are equivalent. If A <B with &(A) =b(B),
the transformation of B-basis into A-basis is of type (iii), on B.
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