
SUMMER MEETING AT CHICAGO 
CONFERENCE REPORTS 

CONFERENCE ON ALGEBRA AND TWENTY-THIRD COLLOQUIUM 

The Conference on Algebra at the 1941 Summer Meeting of the 
Society in Chicago was held in three sessions. The first dealt with ab­
stract algebra, especially with lattice theory, and the lectures were 
given by Professors John von Neumann and Garrett Birkhoff. The 
session was preceded by the first Colloquium Lecture of Professor 
Oystein Ore on the allied topic of Mathematical Relations and Struc­
tures. The second session was concerned with topics in linear algebra 
and the theory of matrices and the speakers were Professors Nathan 
Jacobson and N. H. McCoy. General arithmetic notions came to the 
fore in the third and final session, with talks by Professors J. F. Ritt 
and Oscar Zariski, and Dr. O. F. G. Schilling. There was considerable 
discussion, both organized and spontaneous, after all the talks. 

1. Abstract algebra and lattices 

A number of different algebraic systems can be subsumed under 
the notion of a lattice-ordered group (or an l-group). Professor Birk-
hoff's talk dealt with the structural properties of such groups. By 
definition, an /-group is a group which is also a lattice and which has 
the "homogeneity" property (x^y implies a+x^a+y and x+a^y 
+ a ) . Examples include the additive groups of ordered fields, par­
tially ordered function spaces (Kantorovitch and others), and the 
lattice of all ideals in an integral domain (Clifford, Lorenzen, Krull). 

After discussing the elementary properties of /-groups and the 
variety of possible postulate systems, Birkhoff turned to their struc­
ture theory. The study of homomorphisms of /-groups leads natu­
rally to a concept of an /-ideal. The lattice of all /-ideals is distributive. 
A central result asserts that every /-group with a chain condition is 
either directly decomposable, or has exactly one maximal proper 
/-ideal. 

Many of the results known for abelian /-groups hold without serious 
change for non-abelian groups. However, any /-group in which there 
is a chain condition for the elements is necessarily abelian. There is a 
number of unsolved questions: Does there exist a non-abelian /-group 
which is complete, in the sense that every bounded set of elements 
has a least upper bound? Is there a theory of /-rings? Are there simple 
(non-abelian) /-groups which are not simply ordered? 

von Neumann began by a comparison of classical and quantum 
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mechanics. Any two operators (observables) of classical mechanics 
can be added and multiplied together. But in quantum mechanics, 
the observables, being hermitian operators, can be added but not 
multiplied together, unless they are permutable. Hence they form a 
commutative group only, and not a ring. This group is partially 
ordered if the positive semi-definite operators are called "positive." 
Unfortunately, this ordering does not have the lattice property, 
again unlike classical mechanics. By assuming the lattice property 
of classical mechanics, but not the ring property, we get a physical 
background for the study of complete lattice-ordered abelian groups 
which are not rings. 

These have very special structure. Consider the complete modular 
lattice M of all subgroups of such a group G. In M, the /-ideals of G 
form a distributive sublattice D> closed in M with respect to unre­
stricted unions and intersections. The closed /-ideals form a comple­
mented sublattice B of D (hence a Boolean algebra), which is closed 
in D under unrestricted intersections, but only under finite unions. 

Furthermore, using B and the representation theory of Boolean 
algebras, due to Stone, by bicompact totally disconnected topological 
spaces, one can obtain a representation theory for G by real functions 
on such spaces. In this representation, addition corresponds to addi­
tion; however, a function is to be called positive if the set on which it 
assumes negative values is nowhere dense. At any point, a function 
may assume either all integral or all real values. 

2. Linear algebras and matrices 

Many of the properties of matrices ordinarily proved only for 
matrices with elements in a field can actually be stated and proved, in 
appropriate form, for matrices whose elements lie in more general 
rings. McCoy's conference lecture was concerned with results of this 
character, especially for noncommutative rings. One of the accomp­
lishments of the E. H. Moore General Analysis was a definition of a 
determinant for a hermitian matrix whose elements are quaternions. 
The same technique can be applied to define the determinants of suit­
ably restricted matrices over much more general noncommutative 
rings. However, the proofs of some of the appropriate properties of 
these determinants require new devices. 

The determinant can be used to define a characteristic polynomial 
of a matrix A and to prove the analogue of the Cayley-Hamilton 
theorem that every matrix satisfies its characteristic equation. The 
minimal polynomial of an ordinary matrix is replaced by a suitable 
minimal ideal, composed of all polynomials of which the matrix is a 
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root. In terms of the elements of the adjoint matrix one can determine 
a condition of the usual form that a polynomial belong to this mini­
mal ideal. The theorems of Phillips and Ostrowski about equations 
satisfied by several matrices can also be generalized to matrices with 
elements in a ring. 

Jacobson's talk dealt with Lie Algebras. Let A be an associative 
algebra of characteristic p. I t is well known that the elements of A 
form a Lie algebra if one defines [ab] = ab — ba. Jacobson pointed out 
that in addition, the following identities hold 

(I) (a + by = ap + bp + s(a, b), 

(II) [- . . [[ab]b] - - • b] = [ab>], 

provided s(a, b) is a suitably defined, but complicated, Lie polynomial 
in a and b. He defined a restricted Lie algebra of characteristic p as 
a Lie algebra with operation a—>ap which satisfies (I)—(II) and (aa)p 

= apap. 
He mentioned, as other examples of restricted Lie algebras, the 

skew-symmetric elements of A under any anti-automorphism of At 

and the "derivations" of any algebra (associative or not). A deriva­
tion is a linear operator D which satisfies, for all x, y, (xy)D = (xD)y 
+x(yD), and corresponds, over the real field, to an infinitesimal 
automorphism. 

Conversely, Jacobson showed that any restricted Lie algebra L 
could be realized by a Lie subalgebra of a suitably constructed associa­
tive algebra UL. (The corresponding result for ordinary Lie algebras 
was known.) Sharper results were given. The subalgebra consists pre­
cisely of those elements of UL which are skew under a certain involu­
tion of L. Moreover, if L has a finite basis, then so does UL\ hence L 
has only a finite number of inequivalent irreducible representations 
by matrices. If, in addition, every element of L is nilpotent, then UL 
is a nilpotent associative algebra. 

Finally, Jacobson showed that every derivation of UL induced a 
"restricted" derivation of L, in the sense that xpD = [ • • • [xD, x] 
• • • x], and conversely, every restricted derivation of L was induced 

by some derivation of UL- These results have impelled him to the 
conclusion that restricted Lie algebras of characteristic p are closer 
analogues of Lie algebras of characteristic <*> than ordinary (unre­
stricted) Lie algebras of characteristic p. 

3. General arithmetic 

The theory of polynomial ideals is concerned essentially with the 
manifold of solutions of polynomial equations in many variables, 
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but there has been developed a parallel theory for formal differential 
equations and the corresponding manifolds of solutions. Ritt 's lecture 
summarized some of the recent results in this theory, emphasizing 
the respects in which this theory diverges from the polynomial case. 

Starting with a form F which is a polynomial in the unknowns 
yu - ' ' 9 yn and their derivatives, with coefficients in some (differen­
tial) field Ky there is a corresponding manifold Mt which consists of 
all the zeros ai, • • • , an of F lying in some extension of the coefficient 
field K. There is a unique decomposition of such a manifold into 
"irreducible" manifolds, which corresponds to the decomposition of 
a "perfect" differential ideal into an intersection of prime ideals. 
However, there is no exact analogue of the ordinary algebraic theorem 
which gives a decomposition of arbitrary ideals into primary com­
ponents. The dimension of an irreducible manifold can be appropri­
ately defined, but the dimension of an intersection does not behave 
properly. Among the irreducible components of the manifold of a 
form, one is essential, in the sense that it does not occur in the mani­
folds of other forms. Ritt quoted theorems giving conditions that a 
given manifold be essential for a form in one variable. These con­
ditions, originally found by analytic methods, have been derived in 
part by purely algebraic arguments, in a recent paper by H. Levi. 
The discussion after the lecture concerned some new basis theorems 
for systems of forms over fields of prime characteristic. 

The famous and difficult problem of the reduction of the singulari­
ties of an algebraic manifold by birational transformations was the 
subject of Zariski's conference lecture. An r-dimensional manifold is 
given by a field of algebraic functions of r independent variables. 
Any n elements #1, • • • , xn which generate this field determine a 
projective model of the manifold in the ^-dimensional projective 
space with the (nonhomogeneous) coordinates The 
problem consists in finding some model of the manifold in which 
there will be no singular points. 

Zariski has published an algebraic solution of this problem, for two-
dimensional manifolds. His talk discussed the generalization of this 
at tack to higher dimensions. Two steps are necessary. The first is 
that of local uniformization of the "places" of the manifold. A place 
is essentially a valuation of the associated field of algebraic functions. 
The uniformization theorem asserts that there is a projective model 
of the manifold on which the "center" of the valuation is a simple 
point. This step has been carried out for r-dimensional manifolds. 

The second step is that of getting this uniformization to hold simul­
taneously for all places. Zariski discussed the procedures available 
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here, which consist essentially in a suitable application of locally 
quadratic transformations. He announced that his methods now 
were sufficiently powerful to solve the problem of reducing the singu­
larities of a three-dimensional manifold, in the case where the field of 
coefficients is the complex number field. 

Schilling's talk dealt with a generalized Hubert theory for fields 
with a valuation. The original Hubert theory concerns the successive 
stages in the decomposition of a rational prime p into prime ideals in 
a normal algebraic number field. Alternatively, one may start, not 
with the field of rational numbers, but with the associated £-adic 
number field. In the general case the prime p is replaced by a valua­
tion, and one requires that the field F be relatively complete with 
respect to this valuation (this assumption is more appropriate than 
the stronger requirement of topological completeness). Any normal 
extension of such a field F may be obtained in two uniquely deter­
mined steps. The first step is an "inertial" extension, in which the 
valuation is unramified (that is, the corresponding prime ideal is not 
decomposed). The second step is a completely ramified extension, in 
which the residue class field is not extended. There is a corresponding 
decomposition of the Galois group into two parts. The whole theory 
can be carried through for infinite extensions, and the resulting Galois 
groups can be explicitly characterized. In case the residue class field 
is finite, and the order of the group is a power of a prime, the reverse 
problem can be solved : one obtains necessary and sufficient Conditions 
that a given group can be realized as the Galois group of a normal ex­
tension of the given base field. The whole theory is analogous to a 
generalized "Kummer theory" for function fields. 

4. The Colloquium Lectures 

The object of these lectures is to make a general study of the prop­
erties of mathematical relations as they occur in the various mathe­
matical theories. One may illustrate such relations by various ex­
amples, for instance, the relations: one element contains another, a 
point is middle point between two given ones, a set is the closure of 
another set. One finds that a more general type of relations may be 
considered as correspondences A—>RA between sets, where the set RA 
corresponding to a set A may depend not only upon the elements in 
A, but also upon a certain grouping and ordering of the elements in 
A, as, for instance, in the case of noncommutative or non-associative 
multiplication. If an element a in a set S belongs to the subset RA 
it is convenient to write this as a relation aRA. Such relations may be 
combined in various ways and certain normal forms of relations may 
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be introduced. Particularly interesting is the problem of finding auto­
morphisms or endomorphisms of a relation R, namely those one-to-
one or many-to-one correspondences a such that any relation aRA 
is taken into another valid relation aaRAa. The determination of all 
automorphisms is connected with the problem of finding all corre­
spondences commuting with a given correspondence. I t should also 
be mentioned that these problems lead to a study of the so-called 
monomial groups and to problems connected with a general Galois 
theory, extending the ordinary Galois theory of equations. 

Of particular importance are the so-called binary relations aRb 
between two elements a and b. As examples, one may think of a 
greater than &, a equivalent to b, a orthogonal to b, a divides &, and so 
on. The theory of such binary relations may be conceived of in many 
ways. The first systematic theory of such binary relations was given 
by Peirce and by Schroeder. In their formulation one can say that 
the theory appears as a theory of matrices over a Boolean ring. An­
other method of representing the binary relations consists in conceiv­
ing the relation as a graph, joining two vertices a and b by an edge 
from a to b whenever aRb. The symmetric relations are those for 
which aRb imply bRa. They correspond to the symmetric matrices 
or to graphs in which the edges are considered undirected. 

When the relations are considered to be matrices one can also 
unite their theory with vector spaces over special rings. For the rela­
tions one can define various operations: sum and intersection, mul­
tiplication and dual multiplication. Thus it becomes possible to in­
troduce a ring and ideal theory of binary relations and certain parts 
of the ordinary theory of linear algebras carry over to relations. In 
other ways the theory of relations differs considerably from ordinary 
matrix theory. Also here one is interested in the automorphisms and 
endomorphisms of the relations. I t turns out that the automorphisms 
correspond to the permutation matrices which commute with the re­
lation matrix, and this property may be used for the determination of 
automorphisms. 

Of particular interest in the theory of relations are the transitive 
relations for which 

aRb, bRc implies aRc. 

These relations may be characterized in the ring of all relations in 
various ways, for instance, by the property R2C.R or also as certain 
units or as certain sum relations. They are closely associated with the 
idempotents of the rings of relations. Any transitive relation can be 
broken up in an equivalence relation and a partial order relation. For 
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the equivalence relations a number of important algebraic problems 
can be solved completely, and the interest is therefore centered upon 
the partially ordered sets. These sets have gained an increasingly im­
portant position in mathematical theories, and a number of useful 
properties of these sets are known. Only certain aspects of these the­
ories are discussed in detail in these lectures. 

Among these partially ordered sets the lattices or structures are 
particularly important. In these systems there exists a unique mini­
mal element a\Jb containing any two elements a and b} and a unique 
maximal element aC\b contained in both. These elements a\Jb and 
aC\b may also be considered to be the result of two algebraic opera­
tions with certain simple properties. Recent investigations have 
shown that many mathematical theories may be formulated in terms 
of such structures, and the systematic use of these concepts gives a 
unification and a simplification of the various theories. As special 
instances one may mention the set theory of Stone (Harvard), pro­
jective geometry by Garrett Birkhofï (Harvard) and von Neumann 
(Institute for Advanced Study), euclidean and non-euclidean ge­
ometry by Menger (Notre Dame), algebraic theories by the lecturer. 
Among the many other recent contributions to lattice theory, one 
can mention papers by Dilworth (Yale) and Ward (California Insti­
tute of Technology) on multiplication in such systems, by MacLane 
(Harvard) on certain types of lattices applicable to chains in algebraic 
systems, by Glivenko on metric lattices, by Jacotin-Dubreils on 
equivalence relations. In these lectures only certain specific problems, 
mainly of an algebraic nature, can be discussed with some complete­
ness. 

GARRETT BIRKHOFF 

SAUNDERS MACLANE 

OYSTEIN ORE 

CONFERENCE ON THE THEORY OF INTEGRATION 

The sessions of this conference were held concurrently with those 
of the Conference on Algebra. The following paragraphs give a rela­
tively inadequate summary of the lectures, which provided a very 
illuminating introduction to the researches of the various speakers, 
especially in their relation to the historical development of the 
theory of integration. 

The first session was devoted to theories of integration in abstract 
spaces, and both speakers were concerned with extreme generaliza­
tions of the notion of the upper and lower integrals of Darboux. Pro­
fessor Bochner, in his lecture entitled Integration and partial ordering, 
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discussed the problem of extending the domain of a positive and 
finitely additive operator M on F to F, when V, V' and Y are par­
tially ordered vector spaces with V(Z V', and Y is also assumed to be 
a complete lattice. For an arbitrary element <j> of V' the extension 
M(f> satisfies the inequalities 

M^<t> s sup Mf ^ M<t>S inf Mf s M*<j>, 

where ƒ ranges over V. The largest subset of V' on which the exten­
sion of M i s uniquely determined is the set V on which M*$ = Af*</>. 
The space V is complete in the Riemann-Darboux sense, that is, if 
0 in V' and <£n and \pn in F are such that 

<t>n ^ <£n+l S 0 ^ l ^ + i ^ ^ n , SUp M 0 „ = înf Mfn, 

then 0 belongs to V. In certain special cases, when the elements of 
V' are point functions, and the space V contains sufficiently many 
step-functions for purposes of approximating to Mcj> for arbitrary 
<j> in V, the operation M<j> may appropriately be considered as an in­
tegral f(t>(x)djji,(x). Bochner showed how the theory may be applied to 
a generalization of the classical moment problem, that is, to secure a 
representation of a completely monotone function f(x) with values in 
Y in the form 

ƒ(*) = f er*'dv(t). 
J o 

Among other applications mentioned was the spectral resolution of a 
bounded hermitian operator in Hubert space. The discussion of 
Bochner's paper was initiated by Dr. R. S. Phillips. 

Professor Price, in his lecture entitled Integration and convex op­
erators, began with an historical discussion of the use of the upper and 
lower sums of Darboux, leading up to the generalization of this no­
tion in the "integral range" of Garrett Birkhoff. Later developments 
in this direction by Price himself required the use of a generalized 
convex operator. In the present discussion the speaker showed that 
the notion of a convex operator is entirely unnecessary. In contrast to 
the approach of Bochner outlined above, Price assumes a "measure 
function" T0 given in advance, in terms of which an integral operator 
M (J) =JfdT is constructed. No partial ordering of the domain or the 
range of M is used. The integral range is constructed as follows. Let 
F be a vector space, 5 a class of elements o-, and ƒ a function of a 
whose values are subsets of V. Let T0, for each a in 5, be an additive 
transformation of V into V, let A denote a finite subset (<ri, • • • , <rn) 
of 5, and let D be a class of such subsets A which constitutes a directed 
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set in the sense that it is partially ordered and has the composition 
property. The integral range of ƒ associated with A is defined by the 
formula 

I(f, A) = E [ZVW)+ • • • + 2V./(<r.')] , 
A'^A 

where A' = (a{, • • • , o-w' ), 23 denotes the logical sum, and + denotes 
the addition of complexes. This integral range obviously has the 
following properties: (1) A2>AX implies /(ƒ, A 2 )C/ ( / , Ai); (2) J (A+/ 2 , 
A)QI(fi, A) + 7(/2, A). No topological properties of the space F enter 
into the definition of ƒ(ƒ, A). However, the method of defining a class 
of integrable functions and an integral ffdT associated with the class 
of integral ranges [/(ƒ, A)] depends on the topology in V. If F is a 
Banach space, we may say that ƒ is integrable in case the lower bound 
of the diameters of its integral ranges is zero, and ffdT is then the 
unique element common to the closures of the integral ranges of ƒ. 
The integral has the usual properties when suitable restrictions on the 
basis are made. The speaker indicated the solution of this topological 
problem of integration also in the case when the space F is a space 
(L) of Fréchet. Professor Nelson Dunford initiated the discussion of 
this paper. 

Professor Hildebrandt began his lecture on The general integral 
of E. H. Moore by pointing out the three-fold character of Moore's 
investigations into theories of integrals. Moore first interested himself 
in improper integrals of the Harnack type and then in his two forms 
of general analysis. The central feature of both forms is the introduc­
tion of a completely unrestricted range $ on which is defined the class 
9ft of complex- (or real-) valued functions to be discussed. The first 
form of general analysis, a group of postulational theories, was an 
at tempt to correlate certain theories of linear equations, including 
the Fredholm theory. In one formulation of this analysis two classes 
SDîi and 9J?2 of the type mentioned above are considered, and the 
integral is a bilinear, continuous operator, continuity being defined 
with respect to a relative uniform convergence topology. In the case 
5Dîi = 9Dî2, the operator J may be taken to be properly positive and 
hermitian and is thus the forerunner of the basis of a general Hubert 
space. 

To illustrate how the second form was developed Hildebrandt dis­
cussed the Schmidt theory of the system of equations 

oo 

/ J OCidij = yjy 1 = 1 , Z , • * * y 
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and then indicated the extension to the case when the variables i and 
j have general ranges. For functions jUi, ju2 of a class of "modular func­
tions" an integral J/Z1JU2 is defined which is a bilinear, properly posi­
tive and hermitian operator. If //Z1/J2 is taken to be the inner product 
(MI, M2), the space of modular functions is seen to be a generalized 
Hubert space (with no restriction on the dimension number). Among 
the important features of Moore's general analysis from the point 
of view of present day mathematics are his use of a completely un­
restricted domain ^ for his modular functions, his conception of an 
integral as a bilinear operator, and his exploitation of the Moore-
Smith limit, which has led to the modern use of directed sets. In dis­
cussing the paper Professor Barnard, among other things, developed 
the modular space determined by functions ƒ (x— y) of a type discussed 
in the previous lecture by Bochner. 

Professor Jefïery began his discussion of Non-absolutely convergent 
integrals with a brief historical summary of the early work of Denjoy 
and Perron, recalling that it was not until 1924 that Alexandroff and 
Looman showed the equivalence of the Perron integral with the spe­
cial Denjoy integral. The problem of formulating an integral of Per­
ron type equivalent to the general Denjoy integral was solved by Rid­
der in 1933. The speaker gave Ridder's definition and an outline of the 
equivalence proof. He next discussed the approximately continuous 
integral of Burkill and also his "Cesàro-Perron" integral of the first 
order, of all positive integral orders, and finally of all real orders, with 
a brief description of the application of Burkill's work to Fourier 
series. For a list of Burkill's papers on these subjects the reader is 
referred to volume 11 of the Journal of the London Mathematical 
Society. 

In conclusion Jeffery discussed an approach to the problem of non-
absolutely convergent integrals which was originated by himself and 
M. S. Macphail. A function F(e) of the measurable sets e on the in­
terval (a, b) is absolutely-additive relative to the closed set E if it is 
completely-additive over E and if for the intervals (ou, ft) comple­
mentary toE^Fiaufii) = F[jr,(ai,(3i)]. F(e)is generalized absolutely-
additive on (a, b) if this interval can be covered by a denumerable 
sequence of closed sets relative to each of which F(e) is absolutely-
additive. Let f(x) be measurable and let sn(x) be a sequence of sum-
mable functions tending to ƒ(x) such that ƒ * sn dx tends to a limiting 
function F(x). There is thus associated with F(x) a function F(e) 
= limJ\sndx, provided this limit exists. If it turns out that F{e) is 
generalized absolutely-additive on (a, 6), then F(x) is the non-abso­
lutely convergent integral of f(x). This integral is equivalent to the 
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general Denjoy integral. The approach lends itself to a simple and 
brief treatment which quickly brings out all the main facts about non-
absolutely convergent integrals. I t is also easily adapted to integrals 
of the Stieltjes type, and to a formulation of a theory of non-abso-
lutely convergent integrals in abstract space. The discussion of Jef-
fery's lecture was led by Professor McShane. 

In introducing his talk on Measure in statistical mechanics Pro­
fessor Wiener considered a measure-conserving mapping T of the 
interval (0, 1) into itself and remarked that the set 2 of points P 
for which ai^TlP<b{ (i = 0> ± 1 , ± 2 , • • • , ±n) is measurable. As 
a consequence, then, of the ergodic theorem, it follows that lim «̂-oo 
(Number of values of k in (1, N) for which TkP is in S)/iV = mS and 
for almost all values of P this will be true for all such sets 2 simultane­
ously. A sequence {xk} (& = 0, + 1 , ± 2 , • • • ) is called by Wiener a 
time series, and it is termed regular if the number of values of k in 
( — N, +N) for which ai^xk-.i<bi (i = Q, ± 1 , ± 2 , • • • , ±n) ,when 
divided by 2N, tends to a limit for every selection of the ai, bi. I t was 
indicated above how the time series TlP (i = 0, ± 1 , • • • ) is regular. 
Next Wiener showed how every regular time series generates a meas­
ure of time series together with a transformation under which this 
measure is invariant, or in other words establishes a situation under 
which ergodic theory may be applied. I t may be shown that almost 
all time series are regular and generate the same measure among time 
series. Thus with respect to this measure, translation in time is 
metrically transitive. I t can be shown that any measure-preserving 
transformation may be broken up into metrically transitive compo­
nents. One of the greatest needs of ergodic theory is the technique of 
producing measure-preserving transformations with desired spectrum 
characteristics. I t is generally desired that these transformations be 
mutually transitive. One of the easiest ways of producing such trans­
formations is the explicit formation of regular time series. Wiener's 
theory of Brownian motion was in essence nothing but a proof that 
almost all Brownian motions generate the continuous analogue of a 
regular time series. Another interesting application of time series is 
in the theory of almost periodic functions. Wiener next gave a par­
ticularly interesting example due to himself and Kurt Mahler to show 
the existence of time series with non-absolutely continuous spectra. I t 
is known that the metrically transitive transformation generated by 
this example is not even mixing in the weak sense, that is, the dis­
tribution of Xk, • • • , ock+j is not even on the average independent of 
that of Xk+u * • • » Xk+i+j, where l>j. On the other hand, let {pi} be 
an increasing sequence of primes. Represent a number N in the form 
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A0+J2iAkpi • • • Pk (Ak<pk+1) and let x±n=Jl$u)k
Ak(n>0)1 where 

cofc is a primitive pk+ith root of unity. Then the time series xn will be 
regular and the translation operator will be metrically transitive with 
respect to the measure thus generated. I t will in addition be weakly 
mixing but is not strongly mixing. Wiener concluded his address by 
conjecturing that a slight generalization of such methods may be used 
to derive strongly mixing transformations which will be such that the 
spectrum (in the sense of his generalized harmonic analysis) of some 
sequence ƒ(TNP) will be non-absolutely continuous. This would indi­
cate that not all mixing transformations are isomorphic. The discus­
sion was initiated by Professor von Neumann. 

The talk on Product integrals by Professor Garrett Birkhoff began 
with a brief discussion of the solution, in terms of a product integral, 
of a system of ordinary linear differential equations, as developed by 
Volterra and Schlesinger. Here the matrix product replaces the or­
dinary sum in the definition of the integral. Birkhoff has generalized 
this notion, defining a product integral for functions whose values 
are in a complete normed vector ring with a unit. Thus, let V{t) be 
defined on the interval (a, 6), and let II be a partition (Ai, A2, • • • , 
An) of this interval. Then the Riemann product integral is defined by 
the equation 

J V(t)dt = lim[F(0AiOF(fe)A2O • • • OV(tn)àn]y 
J a * 

where h is in A*, provided the limit exists in the Moore-Smith sense. 
The ring operation O must be distinguished from the "scalar multi­
plication " by A*. I t should be noted that when the operation O is in­
terpreted as ordinary addition, the process of product integration 
just defined reduces to integration in the ordinary sense. Birkhoff 
indicated that while the notion of product integral may clearly be 
applied to linear operators on any Banach space, it may also be so 
interpreted as to apply to non-linear operators. In this case two norms 
are needed in the space of operators. The distributive law which holds 
in any ring may be replaced by approximate distributivity (that is, 
differentiability) near the unity element. In the finite-dimensional 
case, this permits the integrands to have values in any Lie group; the 
matrix-valued integrands of Volterra and Schlesinger are thus in­
cluded as a very special case. In the infinite-dimensional case, the 
values can be in any "analytical group" (see Birkhoff s paper in Jour­
nal of Mathematics and Physics, vol. 16 (1937), pp. 104-132). An 
extension of the notion of product integral indicated above to one of 
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Lebesgue type was discussed by the speaker. Certain properties have 
been secured, but many other problems remain to be elucidated. The 
connection between product integrals and the fundamental group in 
the simplest case of a surface was exhibited by Professor Rainich, 
whose remarks were communicated in a letter read to the conference. 

The lecture on Applications of the theory of integration to the study 
of linear operators by Professor Dunford stated some of the unsolved 
problems as well as the known facts about one type of representation 
of linear maps between Lebesgue spaces, and also gave an outline of 
the method of Dunford and Pettis for attacking these problems. If 
\//= U<t> is a bounded linear map of L^(T) onto L9(S), where 5 and T 
are finite intervals of the real axis, it has a representation of the form 

(1) Hs) = — f H(Sit)<Kt)dt. 
as J T 

In case p = 1 and the map U is weakly compact (that is, U takes the 
unit sphere into a set whose closure is weakly compact), it has the 
simpler representation 

(2) • * (* )= f K{s,t)4>{t)dt. 

However, in case p = q = l there are maps of the form (2) which are 
not weakly compact, and a topological characterization of the inte­
gral operator (2) between L spaces is unknown. One of the results 
stated by Dunford in this connection asserts that (2) (with p = 1 ^q) 
takes weakly compact sets into compact sets. This shows that the 
product of two weakly compact operators in L is a compact operator 
and makes it clear why certain aspects of the Fredholm theory hold 
for linear equations involving a weakly compact operator in L. 

A fundamental class of problems concerning the operators (1) and 
(2) involves the characterizing in terms of the kernels H and K of 
those operators U which are bounded, weakly compact, compact, lat­
tice convergence-preserving, and so on. These problems have for the 
most part been solved in case p=lSq even in the case of abstract S 
and T, but in all other cases very little is known. One method of 
investigation which has proved fruitful in the case p = 1 consists of 
the following three-steps: first, represent the operator £7 as an abstract 
integral U<t> = fr<l>(t)x(t)dt; second, find the relations between the set 
Js=[(l/\e\)fex(t)dt] and the set of values x(T) of the kernel; third, 
express the abstract integral as a numerical integral, that is, fex(t)dt 
=feK(s, t)dt where x(t)=K(-, t). For bounded operators U on L to 
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X the first problem is solvable with a Gelfand integral in case X is 
the adjoint of a separable space and with a Bochner integral (for 
arbitrary X) in case U is weakly compact. The principal result under 
the second problem is that for measurable Pettis integrable functions 
there is a null set EoCZT such that X(T — EQ) and / have the same 
closed convex hull. The representation desired in the third step always 
holds for Bochner integrable functions and at least for those Gelfand 
integrable functions arising in the representation of linear operations 
on L(T) to Lq(S). Clearly, it is the second step above which allows 
us to state the topological properties of the operator (at least those 
which are invariant under the operation of convex closure) in terms 
of the kernel. A partial list of those papers treating the problems men­
tioned above is contained in a paper by Dunford and Pettis appearing 
in the Transactions of this Society, vol. 47 (1940), pp. 323-392. Dun-
ford's paper was discussed by Professor J. W. Calkin. 

H. H. GOLDSTINE 
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