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Now, if m is odd, then (m + 1 — 2iV-3)/2 is an integer which may be 
taken as the value of b since it satisfies the conditions (7). I t is easily 
seen that the set (6), in which b = (m + l — 2N~z)/2 and c is deter­
mined by (8), is not the set (4). However, if m is even and not equal 
to 2N~Sy then b = (m + 2 — 2N~z)/2 and c determined by (8) are integers 
which satisfy (7) and yield a set (6) which is not the set (4). But if 
m = 2N~3, then N^6 and b = 2 satisfies the conditions (7) on b and 
yields a set (6) which is not the set (4). 

An interesting choice of integers b and c is that given by 
& = ( w + l - 2 ^ - 4 ) / 2 i f m i s o d d a n d l e s s than or equal to (2N-* + 2N-z-l), 
but by b = (m — 2N~*)/2 if m is even and less than or equal to 
(2N~4-\-2N~3). Then (6) require no rearrangement, and c is respec­
tively b or b+l. The resulting integers (6) differ from (4) when 
m7±2N-*+2N-*-l, 2N-*+2N~*. 

NORTHWESTERN UNIVERSITY 

HAUSDORFF METHODS OF SUMMATION WHICH INCLUDE 
ALL OF THE CESÀRO METHODS 

H. L. GARABEDIAN 

1. Introduction. The transformation1 

= V" c A* Cn ' ^n 

where cn = f0u
nd<fi(u) and \sn] is a given sequence, defines a regular 

method of summation of the sequence {sn} provided that <j>(u) is of 
bounded variation on the interval O^gw^l, continuous at u = 0, and 

[0 if u = 0, 

<j>(u) = j 1 if u = 1, 

U[<K« - 0) +<l>(u + 0)] if 0 ^ u < 1. 

If these conditions of regularity are fulfilled the sequence {cn} is said 
to be a regular moment sequence (briefly a regular sequence), the mass 
function </>(u) is said to be a regular mass function, and the method of 
summation involved is called a Hausdorff method of summation ( [l ] or 
[2]) and is designated by the symbol [H, </>(u)]. 

Presented to the Society, February 22,1941 ; received by the editors April 8,1941. 
1 To define the symbolism used here we write COT,n = w(w —1) • • • (m— n-\-l)/nl, 

C m ,o=l ; A^j — Xj — C»-,iX/+i+Ci,2^+2+ * • * • 
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By properly specializing the mass function <j>(u) it is possible to ob­
tain various well known methods of summation. For example, the 
mass function (j>(u) = 1 — (1— u)a, a > 0 , defines Cesàro summability 
(C, a). The regular sequence associated with this mass function is 
Cn=l/Ca+n,n, (^ = 0, 1, 2, • • • ). 

I t is the object of this note to exhibit new Hausdorff methods of 
summation which have the rare property of including Cesàro sum­
mability of all real and positive orders. 

2. A mass function <j>{u) independent of <r for which [H, 4>M] 
D(C, o*), ( r>0. In order to exhibit a regular mass function <j>(u) inde­
pendent of a for which [H, 0 («) ]D(C, a), <r>0, we write a theorem 
first stated by E. Hille and J. D. Tamarkin [3] which provides neces­
sary and sufficient conditions in order that [H} <j>(u)]Z}(C, n) 
(» = 1, 2, 3, • • • ). This theorem has recently been restated and proved 
in a paper by E. Hille, H. S. Wall, and this writer [4], 

THEOREM 1. Necessary and sufficient conditions in order that 
[Hy 0 ( W ) ] D ( C , n), n}£l, are 

(i) <fr(u) is absolutely continuous and has absolutely continuous de­
rivatives of order equal to or less than n — l for 0<u^l, 

(ii) (j>(^n~1){u) has a finite right-hand derivative </>^n)(u) for 0<u<l> 
and a finite left-hand derivative </>in)(u) for 0<u^l, 

(iii) <f>(u), u4>'(u), • • • , un-ty^-Viu), un4>^\u)t unct>\n){u) are of 
bounded variation on the interval (0, 1), 

(iv) 1—0(«), <t>'(u), • • • , 0(w~1)(^) tend to zero as u—>1, 
(v) 4>(u), u4>'(u)t • • • , ^ « - ^ ( ^ ( w ) , « " ^ ( w ) , un(/)\n)(u) tend to 

zero as u-^O. 

The simplest regular mass function which we have been able to find 
which fulfills all of the five conditions of Theorem 1 for all values of 
n ^ 1 is the function 

(2.1) <t>a{u) = 1 - exp {u/(u - 1)}. 

We observe that this function is monotone increasing on the interval 
(0, 1). If we modify (2.1) by writing 

4>(u) = [l - exp { - au/(l - uf}]y, a, p, y > 0, 

we obtain a mass function which also fulfills the conditions of Theo­
rem 1 for all n^l. 

3. A theorem due to Hausdorff [l, p. 90]. If a regular mass func­
tion <t>(u) is continuous on the interval (0, 1), and if furthermore we 
set u = e~x, then the associated regular sequence takes the form 
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Cn = I 
•^ 0 

(3.1) cn = I e-nx$(x)dx, « = 0 ,1 ,2 , 

where ^{x)=e~x4>f{e~x)=u^>,{u). Hausdorff has proved the following 
theorem, involving the function $(x) instead of the mass function 
0(w)> which is closely related to Theorem 1 of the preceding section. 

THEOREM 2. lfthefunctions.<è(x),$'(x),$"(x), • • < exist for x>0, if 
they are absolutely integrable on the interval (0, oo), and if they tend to 
zero as x—»0, then the sequence (3.1) defines a regular method of summa­
tion which includes all of the Cesàro methods. 

The hypotheses of this theorem imply that all of the functions in­
volved tend to zero as x—>+<*>. With this observation it is readily 
verified that the mass function 

*(«)-ƒ," 7 * ( ^ T ) * 
when <&(x) satisfies the conditions of Theorem 2, fulfills the conditions 
of Theorem 1 for all » = 1. 

Examples due to Hausdorff of functions which fulfill the conditions 
of Theorem 2 are : 

$(x) = A exp { — ax — b/x}xK~1, a, b > 0; X arbitrary, 

$(x) = Be-w*W-\ b > 0; X < 0, 

where A and B are normalizing f actors which make c0 = 1. If in particu­
lar we have $(x)=e~1/4ajx~3/2/(27r1/2), the associated moment se­
quence is cn = e-nlf2, (n = 0, 1, 2, • • • ), and the associated regular mass 
function is 

1 ru 1 f . / 1 \ - 3 ^ 
**(«) = ^ J y exp {1/4 log t\ I log — ) dU 

Like the function </>a(u) of (2.1), the function <j>b(u) is a monotone in­
creasing function on the interval (0, 1). 

In comparing the mass functions <t>a(u) and </>b(u) we notice that 
<j>a{u) is much simpler in form than <j>b(u). On the other hand the regu­
lar sequence associated with <j>b(u) has a simple form, while the regular 
sequence associated with cj>a{u) cannot be computed in elementary 
terms. 

4. The difference matrix. In a recent paper [5] H. S. Wall and 
this writer have discussed properties of the difference matrix 
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A = (Amcn), where {cn} is a regular sequence. In particular it was ob­
served tha t 

(4.1) Amcn = I un(l - u)md<t>{u)y 

and hence that the sequence (AmCo, AmCi, Awc2, • • • ) is an essentially 
regular sequence,2 the associated mass function being f%(l—t)md<f)(t). 
We observe now for the first time that m need not be a positive in­
teger, the integral in (4.1) affording a definition for the fractional 
differences involved here. 

If, for example, the mass functions 4>a{u) and </>b(u) are inserted in 
the difference matrix new methods of summation are generated which 
have the property of including all of the Cesàro methods. The method 
of summation thus generated by the mass function <j>a{u) has the mass 
function 

(1 - t)c~2 exp [t/(t - 1)} dt, c^ 0, 
o 

where A is a normalizing factor which insures that <£c(l) = l. On the 
basis of known results arising from inclusion problems in the differ­
ence matrix [5] we make the conjecture that summability [H, <j>c{u)\ 
increases in efficiency with increasing c. 
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2 An essentially regular sequence may be normalized or made regular by dividing 
every term of the sequence by its first term. 


