
SOME APPLICATIONS OF CERTAIN POLYNOMIAL CLASSES1 

I. M. SHEFFER 

The term applications will be construed broadly enough as to in­
clude properties. I t is here proposed, then, to examine some properties 
and some applications of some classes of polynomial sets. 

1. Formal properties of Appell sets. The power series approach to 
the theory of analytic functions presents us with a very simple poly­
nomial set.2 Thus, if f(x) is analytic about x — a, we have the expan­
sion 

(1) ƒ(*) = E Cn
 iX~a)n, Cn = ƒ<»>(„), 

in terms of the set 
{(* — a)n/n\}. 

This set has the important property of reproducing itself under the 
operation of differentiation, in accordance with the rule. 

d 
(2) — Pn(x) = Pn-l(tf), 

ax 
where 

Pn=(x-a)n/nl. 

Now this set is not uniquely determined by (2). There are in fact 
infinitely many sets of polynomials {Pn} that satisfy (2). These bear 
the name of Appell sets? after the man who in 1880 f 1 ]4 first made a 
study of them. Appell sets will be the first class to be considered here. 

There are many conditions that are equivalent to the defining rela­
tion (2) for Appell sets. Among the simplest are the following two: 

1 An address delivered before the meeting of the Society in Washington, D.C., 
May 3, 1941, by invitation of the Program Committee. 

2 By a set {Pn) we understand an infinite sequence P 0 , P i , • • • , with P n of 
degree n. 

3 Strictly speaking, Appell's definition is 

( 2 0 -^-Pn(x) = « P n - l ( x ) , 
ax 

but (2) is preferable for our purpose. If {Pn\ satisfies (2), then {n\ Pn) satisfies (2r), 
and conversely. A bibliography on Appell polynomials is given in Davis [5], 

4 Numbers in brackets refer to the bibliography placed at the end. 

885 
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(i) A set {Pn} is an Appell set if and only if constants {an} exist (#o^O) 
such that 

zyTl /y>n—1 /yO 

(3) Pn(x) = a0 h ai — + • • • + an — ; n = 0, 1, • • • . 
n\ \n — 1)! 0! 

(This is the explicit representation of an Appell set.) (ii) In order that 
{Pn} be an Appell set it is necessary and sufficient that a formal power 
series 

(4) A(t) = 2>n/W 

0 

exist so that (formally) 

00 

(5) A{t)e"= £ P » ( * ) t " . 
0 

A (t) will be called the generating f unction for {Pn} . 
I t is natural to inquire, regarding a set of polynomials, if it has 

properties analogous to those of the classical sets (Legendre, Hermite, 
and so on). For example, does it satisfy a linear differential equation 
of the form 

L0y + Liy' + L2y" = \y 

where Li is a polynomial of degree not exceeding i, and X is a parame­
ter which takes on a value Xn for the nth. polynomial of the set? Or 
an equation of the same type but of higher order? Such equations 
contain too few constants to serve for all Appell sets, although we 
shall see that there is a subclass of such sets that satisfy equations 
of this type. If, however, we are willing to permit the order to become 
infinite : 

oo 

(6) T,Lr(x)y^(x) =\y(x), 
r=0 

where Lr is of degree not exceeding r, then there is ample freedom not 
only for Appell sets but for all sets. That is, (6) is a universal equation 
for all polynomial sets in that given an arbitrary set {Pn}, it is possi­
ble to choose {Lr}, {Xr}, and indeed in infinitely many ways, so that 
{Pn} satisfies (6) (y = Pn for X=Xn). 

The advantages of a universal or, as we may say, canonical equa­
tion are evident. But this very generality may sometimes be a defect 
in studying particular sets, unless it is possible to characterize the 
coefficients [Lr] corresponding to such sets. Fortunately a charac-
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terization can be achieved in the case of Appell sets. The simplest 
(but not the only6) canonical equation of form (6) for Appell sets6 is 

[n] 
(7) (h + x)Pi + bxPJi' + W n " ' + • • • = nP», n = 0, 1, • • • . 

That is, i o = 0, Li — bo+x, Lk = bk-i, £ ^ 2 ; X„ = «. Moreover, if {Pn} 
has the generating function A(t), then {&„} is denned by 

(8) i,bJ» = B{t)=A'(t)/A{t). 
0 

It follows from (7) that {Pn} is an Appell set if and only if a se-
quence {bn} exists so that 

(9) nPn(x) = (bo + %)Pn-i + &iiV-2 + • • • + bn^Po, n = 1, 2, • • • . 

This is of interest because it gives the set {Pn} by recurrence. It has 
been used by Webster [17] to give a simple proof that the Hermite 
polynomial set is the only Tchebycheff (orthogonal) set that is at the 
same time an Appell set. Here then is an Appell set that satisfies a 
second order equation of form (6). In general we have the theorem: 
An Appell set [Pn}i with generating function A(t), satisfies a finite 
order equation of type (6) if and only if A (t) has the form 

(10) A(t) = e?*™, Q(t) = polynomial; 

and the minimum order of all such equations for {Pn} is the degree7 of 
Q(t) [ l l ] . As examples, the set {(x — a)n/n\] and the Hermite set 
have for A(i) the respective functions e~a', e~*2/4; and these sets sat­
isfy equations of the first and second order respectively. 

2. Relation of Appell sets to functional equations. In 1888 Pincherle 
made a study of the following linear difference equation with con­
stant coefficients : 

(11) L[y(x)] s £ a,y(x + «,) = F(x). 
3=1 

His memoir, in a French translation, was reprinted in 1926 in Acta 
Mathematica [ l0] . In the course of his investigation he pointed out 
the value of Appell sets. Thus for (11), two Appell sets preeminently 
suggest themselves, namely {Pn} , {Qn}, defined respectively by 

6 There are infinitely many, 
6 Conversely, if {Pn} satisfies (7), then {cn-Pn} will be an Appell set for proper 

choice of the constants {cn}. 
7 The one exception is when Q(t) = constant. 
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(12) L[x»/nl] = P»(*), L[Qn(x)] = x»/nl 

For as Pincherle observed, if F(x) has the expansion 

oo 

(13) F(x) = 2>„P»(*) , 
o 

then a formal solution of (11) is given by 

oo 

(14) y(x) = J^cnx
n/nl; 

o 

and if F(x) has the expansion (1) (for a = 0 ) , then 

00 

(15) y(x) = X) CnQn(x) 
0 

formally satisfies (11). For the case that F(x) is an entire function of 
finite exponential type,8 Pincherle showed that there is a solution of 
(11) of the same kind. He also found a solution when F(x) is analytic 
a t infinity. His method of proof however did not involve polynomial 
sets. 

In discussing the equation 

(16) L[y(x)] s y(x + 1) - y(x) = F(x), 

a particular case of (11), A. Hurwitz [7] used the set {Qn}, which 
for (16) is the set of Bernoulli polynomials. Since series in these poly­
nomials serve to define only a limited class of entire functions, 
whereas he was interested in the case where F(x) is an arbitrary 
entire function, Hurwitz modified the polynomials by adding to them 
linear combinations of properly chosen exponential functions. The 
device used has been termed the method of expanding contours. For 
from the generating relation 

tetx °° 
(17) ~ - = EQnC*)'" 

el — 1 o 
for the Bernoulli set, valid for \t\ Klir, follows the formula 

1 r etxdt 
(18) Q,n(x) = > 
V J V K liriJc (e*- 1)/» 

C being a contour around t = 0 and lying in \t\ <2T. If now C is ex­
panded so as to include a certain number of poles of the integrand, the 

8 A definition will be given later. 
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new contour, call it Cn, will define for each n = 0, 1, • • • a function 

* 1 r etxdt 
(19) Qn(x) = , 

2wiJCn ( e « - l)t» 
which is Qn(x) augmented by certain exponentials (the residues at the 
poles lying within Cw). Hurwitz proved that to every entire function 
F(x) given by (1) (a = 0) there is an entire function solution of (16) 
given by (15) with Qn replaced by Qn*. 

Carmichael [4] extended the method and the conclusion to equa­
tion (11). The method of expanding contours can be shown to apply 
to (11) and (16) even when F(x) is not an entire function. All that is 
required is that F(x) be analytic about some point in a circle of radius 
exceeding a number r, whose (fixed) value is determined by the equa­
tion and the method. That is, one obtains what may be called a semi-
local solution rather than a completely local one. 

This restrictive condition on F(x) can be, and is, lifted by empha­
sizing the set {Pn} rather than {Qn} [12], [13]. For equation (11), 
Pn(x) is given by 

1 r 
(2.0) Pn(x) = — [ai(x + coi)» H + ak(x + co*)w]. 

n\ 
Let the points —coy,7 = l, • • • , k, be plotted. For each x let 

Pi(x) = | x + coj|, p{x) = max {pi(x), • • , p*(a)}. 

As x varies, there is a unique point x* at which p(x) attains its mini­
mum value p =p*. This means that the circle of radius p* and center 
x* will cover the set {—coy}, and that no other circle of equal or 
smaller radius will have this property. 

Now consider (20). I t is undesirable, from the point of view of con­
vergence, to consider those values of x for which the maximum p(x) 
is attained by two or more of the py(x)'s. The set of such points x, 
which we shall term the critical set, is to be excepted. The following 
results can be proved: If the series y^nlcnPn(x) converges at x = xo (not 
in the critical set), then it converges absolutely in the circular polygon 

(21) pj(x) = | x + coy | < p(xo), j = 1, • • • , *, 

and uniformly in every closed region therein ; and a necessary and suffi-
cient condition that the above series converge for at least one x not in the 
critical set is that lim sup | cn\

1/n < / l p * . 
When such a series converges, and thus converges uniformly in 

some region, the function defined by the series is of course analytic. 
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The converse is also true : If and only if a function F(x) is analytic 
at x=x* can it be expressed as a convergent Pn-series. The manner of 
proof is roundabout. Set F{x) = \/(x — a) in (11), a being a parameter. 
The resulting equation 

(22) L[W(Xi a)] =—L-
x — a 

is shown to have two (or three, according to the case) meromorphic 
solutions, from which follow two (or three) Pn-expansions for 
l/(x — a)> valid in some neighborhood of x = #*, for a on two (or 
three) arcs that form a closed contour around x*. Application of the 
Cauchy integral formula then shows that F(x), analytic at x*, also 
has a convergent Pn-series. I t follows, also, that if F(x) is analytic 
about x* there is an analytic solution of (11) in the neighborhood of #*; 
and a translation of the variable x permits the point #* to be replaced 
by any other point of the plane. 

I t should be added that Appell expansions are usually not unique ; 
that is, that the function zero possesses at least one Pn-expansion in 
which the coefficients are not all zero. To see this we turn back to (5). 
If to5*0 is a zero of the generating function A(t), then 

oo 

(23) 0 = E *oP(*) 
o 

is an expansion of zero. 
We now consider the more general functional equation 

00 

(24) A [y(x)\ EEE X aky^(x) = F(x), 
k=0 

which is a linear differential equation of infinite order, with constant 
coefficients. Equation (11) is subsumed under (24). For if we call 

00 

(25) 4 ( 0 = £<**** 
0 

the generating f unction f or operator A [y], then (11) is that case of (24) 
for which 

k 

(26) A(t) = X > ^ < . 
3=1 

The Appell set {Pn} defined by (12) likewise has as its generating 
function the A (t) of (25). Now the expansion problem will differ with 
the character of A (/). In general, the larger the class of functions that 
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we wish to expand in a {Pw} -series, the greater must be the restriction 
on A(i). A fruitful assumption, and one that we now make, is that 
A(t) is of finite exponential type.9 That is, the coefficients of (25) sat­
isfy the inequality 

(27) lim sup | nlan\
lln < <*>. 

n—>oo 

If this superior limit has the value a, then A(t) is said to be of ex­
ponential type a (exp. type <r). 

From (6) we see that A(t)etx is, in the variable t} of exp. type not 
exceeding a +1 x | , so that lim sup | n \Pn (x) \lf n ^ a +1 x \. This is, how­
ever, too crude an estimate. To better it, we observe that if a function 
C(t) =y^.aCntn is of exp. type o", then it is the associated entire f unction 
(AEF) relative to the function Ci(t) =Yjon\cnt

n\ and this latter func­
tion has I/o- as its radius of convergence. Conversely, if by studying 
d(t) one can locate the singularity nearest the origin, that will serve 
to determine the type of C(t). 

Applying this principle to (5), it is found [14] on setting 

(25) A{t) = A E F { ^ ( 0 } , A*(t) = / i i ( 0 , . 

that 

/ 1 \ " n\Pn(x) 
(29) A*l ) = £ —, 

\t - x) o /n+1 

11\ sufficiently large. Let G= {a} be the set of all the singularities of 
A*(t) in the whole plane, and define the continuous function D(x) by 

(30) D(x) = max | x + l/a \. 
o 

It can then be established that 

(31) lim sup | n\Pn(x) \^n = D(x). 

Let us call the curves D(x)=c the level curves for the set {Pn}. A 
point set discussion reveals the following information: There is a 
unique point x* where D(x) has its minimum value Dm. For every 
c>Dmf the level curve is a simple closed convex curve, containing in its 
interior the level curves D(x)=c' for every c' in Dm^cf <c. In the 
case that the points {a} are finite in number, the level curves consist 
of circular arcs. This is the situation relative to equation (11), where 

9 See Muggli [9], where other cases are also taken up. The solution of (24) is there 
carried out by the method of expanding contours, and for the case where A(t) is of 
finite exponential type, F(x) is assumed to be an entire function. 
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the region of convergence of a Pn -expansion was found to be a circu­
lar polygon. 

With respect to the present general case we find that : If lim sup | cn \
ll n 

=p<l/Dm, then series ^2nlcnPn(x) converges absolutely interior to the 
level curve D(x) = l/p, and converges uniformly in every closed region 
therein j thus representing an analytic f unction there. 

At this point we are forced to abandon the method that proved so 
useful in dealing with (11), for we have not sufficient knowledge of 
solutions of the equation corresponding to (22) to follow the earlier 
plan. Turning to the polynomial set {Qn} of (12), and modifying it 
by the method of expanding contours, it is possible, first to solve 
equation (24) semi-locally, and then to obtain a Pw-expansion theo­
rem : If F(x) is analytic about a point x = xo in a circle of radius exceed­
ing X, where X is determined by the operator A, then equation (24) has 
an analytic solution y{x) in some neighborhood of x0; and if F(x) is 
analytic about x = 0 in a circle of radius exceeding X* (again determined 
by operator A), then F(x) has a convergent Appell expansion 

oo 

(32) F(x) = 2>fc»P n (*) . 
o 

The numbers X, X* are not sharply defined. Burdette [3] has obtained 
sharp values on making the additional hypothesis that A (t) is 
bounded on a certain infinite sequence of expanding contours. 

3. Sets of type zero. Let us turn back to equation (16). Relative to 
it one can consider the set of Newton polynomials 

x(x — 1) • • • (x — n + 1) 
(33) Nn(x) = — - - ; 

n\ 
for this set, which is not an Appell set, has the fundamental property 
of reproducing itself under application of the difference operator: 

(34) ANn(x) = tfn-i(*), 

so that if F(x) has the expansion 

oo 

(35) F(x) = 52cnNn(x), 
0 

then a formal solution of (16) is given by 

00 

(36) y(x) = X cnNn+i(%). 
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We may say that {Nn} is a set of difference polynomials, as is every 
other set (and there are infinitely many such) that has the property 
(34). Such sets may be examined as were Appell sets, but at this 
point there is suggested a general problem : Can there be assigned to 
an arbitrary set {Pn} an operator / that will reproduce {Pn} in the 
sense that 

(37) j[Pn(x)] = Pn-l(x) 

for all n? 
The answer is in the affirmative, and / can be expressed in the form 

00 

(38) J[y] = T,L~-i(*)yln)(.*) 

where Lk(x) is a polynomial of degree not exceeding k. This too is a 
universal (or canonical) operator, since to every set corresponds a de­
termined J . For Appell sets and for difference sets, the Ln 's are con­
stants. This suggests examination of all sets with constant Ln 's. We 
shall say that a set {Pn} is of zero type [15 ] if in its associated operator 
J (as given by (38)) the polynomials Ln(x) are all constants. 

For zero type sets, then, (38) can be written 

00 

(39) J[y(x)] = Z cny^(x), a •£ 0. 
tt=l 

Let the formal power series 

oo 

(40) J(t) = Z cJn 

1 

be called the generating f unction for (39), and let H(t) be the inverse 
power series to J(t), so that (formally) 

(41) J(H(t)) = H(J(t)) = /. 

Zero type sets can then be characterized as follows: {Pn\ is a set of 
type zero if and only if a formal power series A (t) =Yl™antn exists so that 

00 

(42) A(t)e*H^ = Y,Pn(x)t\ 
0 

Observe that the Laguerre polynomials \Ln(x)} are of zero type, since 

1 / - xt \ -
(43) exp ( ) = 22 Ln(x)t\ 

\ — t \ 1 — t / o 
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Various other characterizations of zero type sets can be found. One 
of the simplest is that constants {qko}, {qui} exist so that the recurrence 
relation 

00 

(44) X) (tf*o + xqjci)Pn-k(x) = nPn(x) 

holds for n = 1, 2, • • • . The relation between (42) and (44) is expressed 
by the series 

Af(i) °° °° 
(45) — — = Z ?n+l,0*n, H'(t) = X) ?n+l,l*n. 

A(t) o o 

Having learned that among Appell sets is a Tchebycheff set (the 
Hermite polynomials) one naturally asks if there are other orthogonal 
sets in the extended class of zero type sets. This problem was solved 
by Meixner [8], by use of the Laplace transformation. He took (42) 
as his definition of the polynomials that he was investigating. Follow­
ing Meixner, Geronimus obtained some interesting properties of zero 
type sets. A second resolution of the Meixner problem can be made by 
the combined used of (44) and the characterizing recurrence relation 

(46) Qn(oc) = (X + Xn)Ön-l(^) + fXnQn-.2(x), U = 1, 2, • • • , 

for orthogonal polynomials. For (46) to represent a set of type zero 
it is necessary and sufficient that 

(47) Xn = a + bn, fxn = (n — l)(c + an), 

with c+dn?*0 for n>\. From this will follow the explicit determina­
tion of the required sets, as (otherwise) obtained by Meixner. 

Consider an operator / of form (39). The equation (24) can be 
equally well expressed in terms of / : 

00 

(48) A [y(x)] = 2 a>[y(x)] = F(x), 

where / ^ b ] ^ ^ ^ " 1 ^ ] ] , J°[y]^y> As such, we see that polynomial 
sets of zero type suggest themselves as a means of studying equation 
(24). This study, however, awaits more knowledge of the expansion 
properties of such sets. 

4. On equations with non-constant coefficients. The functional 
equations already considered have been of the constant coefficient 
type, and it may be asked if zero type sets can be applied to more 
general equations. Such application has been made to the linear differ-
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ential equation of finite order, and this points the way to other equa­
tions (where, however, the results are as yet only formal). 

Consider the differential equation 

(49) L[y(x)] s y<*> + Pl(x)y<k-v + • • • + pk(x)y = F(x). 

We seek [16] an operator M [y] that is inverse to L[y] in accordance 
with the relations 

(50) ML[y] ss y; LM[y] s y. 

The assumed form of M [y] is 
+00 

(51) M[y]= E Mn(x)y^(x), 
n=—oo 

where 

(52) ?<-»>(*) = f f *y(fl*, » = 1, 2 , . . . . 

(n-fold) 

It is found that (50) can be satisfied by choosing Mn(x) = 0 , n > — k\ 
M-.k(x) = 1 ; and the other M's by recurrence : 

M-m(x) = Cm,w_i(^)M_(m_i)(x) + Cm,m_2(x)M_(m_2)(x) + • • • 

+ Cm,k(%)M-.k(%)9 m> k. 

(The functions C<y(^)are determined by the coefficients pn(x)and their 
derivatives.) On setting 

(54) H (x, t) = M-*(x) — — - + M.ik+1)(x) - + • • • , 
(* — 1)! k\ 

a solution of (49) is given by 

(55) y(x) = f H(x, t)F(t)dt. 

H(x, t) itself satisfies (in the variable x) the homogeneous equation 

(56) L[u] = 0, 

as do also dH/dt, d2H/dt2, • • • , d^H/dt*-1; and these k functions 
form an independent set of solutions. 

The series (54) has an interesting domain of convergence, but we 
must forego a discussion of this [16]. What is of importance for our 
present aim is the observation that the Appell polynomial set 
{(x — t)n/n\] is present (at least, beginning with n = k-~ 1) in this 
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series. Any other Appell set would (formally at least) lead to the same 
result, in the following sense: If {Pn(x)} is an Appell, set then the 
formal series 

(57) K(x, t) = M-k{x)Pk^{x - t) + M„(k+1)(x)Pk(x - / ) + . . . 

satisfies (56). The convergence problem for (57) has not been ex­
amined, although relation (31) is certainly applicable. 

With (49) as a guide, we turn to the corresponding difference equa­
tion 

(58) L[u] s Aku{x) + qi(x)Ak-lu(x) + • • • + qk{x)u{x) = F(x). 

Here we look for an inverse operator M(LM[u]^ML[u]=u) in the 
form 

+ 00 

(59) M[u]= X Mn(x)A»u(x), 
n=—oo 

where for negative n the "sum" is meant; that is, An[A~n[w]] = « . 
We can again choose Mn(x)=Q for n> — k; M-k(x) = l; after which 
Af_(jfe+i)(a;), M-(k+2)(x), • • • are determined by recurrence, in analogy 
with (53). And like (54) (or (57)) we set up the (formal) series 

(60) K(x, t) = M-k{x)Pk-x{x -t) + M-(k+1)(x)Pk(x - * ) + . . . 

where {Pn} is any difference set (APn = Pw_i). 
Convergence has not yet been examined. Formally, however, (60) 

satisfies in the variable x the homogeneous equation L[u]=0, as do 
the functions AK, A2K, • • • , where the differences are taken with re­
spect to the variable /. 

5. Remarks on null-functions. We shall close with some remarks 
on the problem of null-functions (as we may call them). Let an infinite 
sequence of functionals {Mn} be given. We assume them to be of the 
form 

(61) Mn[f(x)] = cn0f(0) + cnlf(0) + cn2f"(0) + • • • , ü = 0, 1, • • . , 

supposed applicable to a given class of analytic functions. By a null-
function we shall understand a function ƒ(x), not identically zero, for 
which 

(62) 9*C» [ƒ(*)] = 0, » = 0, 1, • • • . 

The determination of null-functions is linked to the problem of find­
ing the radius of completeness of the sequence of functions {Mn(t)}, 
where 
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(63) Mn(t) = Cn0 + Cult + Cn2t
2 + ' ' ' ', 

that is, the largest number r such that every function ƒ(/), analytic 
in \t\ <r> has an expansion 

(64) f(t) = J2fnMn(t) 
0 

convergent in 11\ <r and uniformly convergent in every closed region 
therein.10 

An interesting subclass of (61) is that in which VYCn has the form 

(65) Mn[f] = CnnfM(P) + Cn,n+l/(W+1)(0) + ' ' ' , Cnn * 0 . 

An example of this, namely when 

(66) Mn[f] = ƒ<»>(*„), | a» | ^ 1, n = 0, 1, • • • , 

leads to the Takenaka problem [18] of determining the largest num­
ber X for which it is true that no entire function of exp. type less than 
X can be a null-function. I t is known that X^log 2, and it is believed 
that X=7r/4. The example 

TX 7TX 

f(x) = cos sin ; an = (— l ) n , 
4 4 

shows that 7r/4 cannot be exceeded. 
Corresponding to the above sequence an= (— l)w (and it may very 

well be true for every sequence for which {an} is bounded), the fol­
lowing is true: Given any <r>0, there is only a finite number of 
linearly independent null-functions of exp. type not exceeding a. (As 
(7—> oo, however, the number of independent null-functions is un­
bounded.) If, however, the sequence {an} is not required to be 
bounded, and in other cases of the functionals {Mn}, there may be a 
continuous array of null-functions. This fact we shall illustrate by 
borrowing from the theory of sets of type zero. Consider, in fact, the 
set {Pn} for which 

oo 

(67) e**™ = E Pn{x)tn) 
0 

or, letting / ( / ) be the inverse of H(t), 
oo 

(68) e*<= Z P „ ( x ) [ / ( 0 h 
0 

10 For work in this direction, consult Whittaker [18], Gontcharoff [ô] and Boas 
[2]. These works include further references. 
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Take [ / ( 0 ] n a s "the function Mn(t) of (63), which thus determines the 
f unctionals 5frCn[/]. 

A simple example is given by H(t) = / = / ( / ) , for then Mn [ƒ ] = ƒ<n) (0), 
so that there is no null-function that is analytic at the origin. Now 
take H(t) =log ( /+1) , J{t)=el — l. One verifies that the function 
f(x) — eax(l — e2kTix) is a null-function for every integer k and for every 
value of a. That is, there is a continuous spectrum of null-functions. 
This property is shared by f unctionals {Mn} corresponding to other 
choices of H(t). 
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