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(xk<Xk). Then we obtain 9ft by removing from the plane of z the 
two circular domains \z\ < p 0 and |z\ > p and all annuli Xu< \z\ <x{, 
corresponding to the equations (14) with two different positive roots. 

I t is then a consequence of Walsh's theorem that the different 
(open) intervals (x&, xl) have no points in common and lie in the 
interval (po, p); moreover, if for two of these intervals (#&, Xk), 
(xm, Xm) we have k<m, then we have certainly x{ tkxmi and it is 
easily seen that we have even x{ <xm. 

As Walsh remarks, his proof of Pellet's theorem remains valid also 
in the case of a power-series and of its roots inside the circle of con­
vergence. I t is hardly necessary to remark that our proof of Walsh's 
theorem also applies mutatis mutandis to a power series, if we only 
consider its roots within the circle of convergence. 
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It was observed by E. Kasner1 that in the complex euclidean plane 
the limiting value of the ratio of the arc of a curve to its chord, while 
one end point of the arc is fixed, and the other approaches it along the 
curve, is not always unity; but assumes for analytic curves tangent to 
a minimal line, a sequence of real values, .94 • • • , .86 • • • , .80, • • • . 
These values are functions of the order of contact only, and approach 
zero as the latter increases. In this note we shall describe two similar 
situations which occur in real spaces. 

The problem in the case of the K plane2 has been worked out in 
Professor Kasner's Seminar in Geometry.3 In this plane the length 
of the curve y =f(x) passing between points of abscissae xi, X2, in that 
order, is given by 

X1 \dx/ 
1 E. Kasner, The ratio of the arc to the chord of an analytic curve need not approach 

unity, this Bulletin, vol. 21 (1914), pp. 524-531. Similar questions for three dimen­
sions are discussed in E. Kasner, Complex geometry and relativity, theory of the "rac" 
curvature, Proceedings of the National Academy of Sciences, 1932, p. 267. 

2 Kasner, Trihornometry, a new chapter of conformai geometry, Proceedings of the 
National Academy of Sciences, vol. 23, p. 346. 

3 R. Coleman, S. Jablon and D. Mittleman obtained the results for the K plane 
given below. 
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The distance from the point (xi, yi) to the point (x2, J2) is defined as 
the length of the straight line passing from the first of these points 
to the second and is therefore given by the equation 

(x2 ~ * i) 2 

(2) c = 
yi - yi 

We see that lines parallel to the x-axis have infinite length while those 
parallel to the ^-axis are the minimal lines or lines of zero length. We 
shall now investigate the ratio of the length of an analytic arc to the 
distance between its end points, both length and distance being used 
in the sense just defined. 

The most interesting cases will be those of curves tangent to a 
minimal line. We will obviously lose nothing by choosing the origin 
for the point of contact. We will write the equation of our curve in the 
form x = any

n+an+xyn+1+ • • • , aW7^0. Evidently this includes the 
normal as well as the exceptional situations ; for when n = 1 the curve 
cuts the minimal line, for greater values of n it is tangent to it. 

We may write for the length of the curve from the origin to the 
point (X, Y) the equation l = Jl(dx/dy)2dy. This is obtained easily 
from the expression (1) for the length. Since dx/dy = nany

n~1 + • • • , 
this becomes 

ƒ n—1 2 I 2 2 2n—2 

{nany + • • • ) dy = I {n any + • • • )dy, 
(3) ° 

2n- 1 

The distance from the origin to the point (X, Y) is seen to be 
X> {anY* + • • • )2 2 ,n-i , 

(4) C = 1T = y = ön + ' " -

The first terms of these expansions do not vanish, so that as Y ap­
proaches zero, l/c approaches their quotient n2/(2n — 1) as limit. For 
n = 1 this is unity, but for curves tangent to the minimal line this limit 
assumes a sequence of values 4 /3 , 9/5, 25/4, • • • , increasing towards 
infinity with the order of contact. 

There remains the case of curves tangent to a line of infinite length. 
These must be written in the form y = anx

n+ • • • , a n ^ 0 , n>l. A 
calculation similar to the preceding one shows that such curves have 
infinite arc length measured from the point of tangency to any other 
point, while the corresponding chords are finite. 
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In the affine differential geometry of the plane which has been de­
veloped by Blaschke4 and others we work with elements consisting 
of a point and a slope. For a curve to pass from the element consisting 
of the point (xi, 3/1) and the slope y{ to the element consisting of the 
point (#2, ^2) and the slope y{ it must pass through each point and 
have at each the corresponding slope. If y=f(x) is the equation of 
such a curve, the affine length of the arc between these elements is 
defined by 

This integral is invariant under an area-preserving affine transforma­
tion. With the given end-conditions it becomes stationary when the 
arc is a parabola. Its value in this case is a relative maximum and is 
called the affine distance between the elements. 

I have carried over the problem to this case by considering the 
limit of the ratio of the affine length of an arc to the affine distance 
between the elements tangent to the arc at its end points, as one end 
point is fixed and the other approaches it along the curve. 

It will be observed that all straight lines have zero affine length, 
and it is to be expected, by analogy with the preceding cases, that 
unusual values of the limit will occur for those curves and only those 
which have high order of contact with a straight line. That this is 
indeed the case is shown in the following calculations. 

By means of a suitable translation and rotation, which cannot af­
fect the quantities under investigation, we write any analytic curve 
in the form y = avx

n+an+ixn+l+ • • • , # n ^ 0 , n^2. The affine length 
of this curve from the element at the origin with slope zero to the 
element tangent to the curve at the point (X, F) is found by means 
of (5) to be given by 

(—1J dx = (n(n - l)anx"-* + • • • )ll3dx, 
0 \dx2/ J 0 

(6) / = f ([n(n - lK] 1 ' 3^- 2 ) / 3 + • • • )dx, 
Jo 

[»(»- IK] 1 ' 3 

/ = _ . - x ( n + 1 ) / 3 + . . . 
(n + l)/3 

4 W. Blaschke, Differentialgeometrie, vol. 2, chap. 1. (5) and (7) below are easily 
obtained from the equations given by Blaschke in vector notation. 
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The general formula for the affine distance between the elements 
consisting of the points (#i, y\), (#2, yi) with the slopes y{ and y{ re­
spectively is 

__ l"4[(y2 - yi) - yi{x% - x^lyijxj - sQ - (y2 - yi)] l 1 / 3 

L yi - yi J 

In the case under consideration this becomes 

T4F l 1 ' 3 dyl 
c = — ( I f - F) , F' = / = no»*- 1 + * • • , 

r(4a„X" + • • • )([*<*.*» + - - ] - k * n + - • • ])!"* 
L nanXn~x + • • • J ' 
"4(» - l)anT /3 

v ' x ( n + 1 ) / 3 + • • • = Y\{n - 1)0,11 

We observe that the first terms of the expansions for / and c do not 
vanish. Consequently as X approaches zero the ratio of these quanti­
ties approaches 

3 p 2 l 1 / 3 

n + 1 LT J 

Thus the limiting value of the ratio of affine arc to affine chord will be 
unity f or the case n = 2, but for curves with a higher order of contact with 
a straight line it will assume a sequence of values .98 • • • , .95 • • • , 
.92 • • • , • • • , dependent only on the order of contact and decreasing 
towards zero as the latter increases. 

We have thus seen that there is a close agreement in the behavior 
of the limit of the ratio of the arc and chord of an analytic curve in 
the complex euclidean, the Kasner and the affine plane. In each case 
this quantity is unity for most curves, but may also have one of a denumer-
able set of other values. These values occur for curves with higher than 
the least possible order of contact with a minimal line, and depend only 
on that order of contact. 
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