LINEAR FORMS IN FUNCTION FIELDS ${ }^{1}$

LEONARD TORNHEIM

We shall prove algebraically an analogue for function fields ${ }^{2}$ of a well known theorem of Minkowski on linear forms. ${ }^{3}$

Theorem 1. Let F be a field and z an indeterminate over F. Let

$$
\begin{equation*}
L_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \cdots, n \tag{1}
\end{equation*}
$$

be n linear expressions with coefficients $a_{i j}$ in $F(z)$ and with the determinant $\left|a_{i j}\right|$ of degree ${ }^{4} d$. Then for any set of n integers c_{1}, \cdots, c_{n} which satisfy the condition $\sum_{i=1}^{n} c_{i}>d-n$ there exists a set of values for x_{1}, \cdots, x_{n} in $F[z]$ and not all zero such that each L_{i} has degree at most c_{i}.

First, we may assume that all of the c_{i} are equal. For, suppose that c is the maximum of the c_{i}. Write L_{i}^{\prime} for $L_{i} z^{c-c i}$. The determinant of the coefficients of the L_{i}^{\prime} has degree $d^{\prime}=d+\sum\left(c-c_{i}\right)<\sum c+n$. If there is a set of values for x_{1}, \cdots, x_{n} with the property that the degree of each L_{i}^{\prime} is at most c, then these same values will make the degree of L_{i} at most c_{i}.

Next, we may assume, after multiplying each L_{i} by a suitable polynomial and by using an argument similar to that above, that all the $a_{i j}$ are in $F[z]$.

We shall now convert our system of L_{i} by means of a transformation of determinant unity with elements in $F[z]$ into an equivalent system having $a_{i j}=0$ for $i<j$. Let b_{1} be the g.c.d. of the $a_{1 j}$; then $b_{1}=\sum_{j=1}^{n} a_{1 j} c_{j 1}$ for appropriate $c_{j 1}$ in $F[z]$. Necessarily the $c_{j 1}$ are relatively prime. It is possible to find other quantities $c_{j k}(k=2, \cdots, n)$ such that the determinant $\left|c_{j k}\right|$ has value unity. ${ }^{5}$ Thus the transfor-

[^0]mation $x_{j}=\sum_{k=1}^{n} c_{j k} x_{k}^{\prime}$ has determinant unity and hence it has a reciprocal transformation with elements in $F[z]$. The forms L_{i} are transformed into $L_{i}^{\prime}=\sum_{k=1}^{n} a_{i k}^{\prime} x_{k}^{\prime}$. Here $a_{1 k}^{\prime}=\sum_{j=1}^{n} a_{1 j} c_{j k}$, and, being a linear combination of $a_{1 i}$, it is divisible by their g.c.d. $b_{1} ; a_{1 k}^{\prime}=b_{1} a_{k}$. The transformation
$$
x_{1}^{\prime}=x_{1}^{\prime}-\sum_{k=2}^{n} a_{k} x_{k}^{\prime \prime}, \quad x_{r}^{\prime}=x_{r}^{\prime \prime}, \quad r=2, \cdots, n,
$$
of determinant unity transforms the L_{i}^{\prime} into $L_{i}^{\prime \prime}$ with $L_{1}^{\prime \prime}=b_{1} x_{1}^{\prime \prime}$.
The procedure is repeated for the $n-1$ linear forms $M_{i}=\sum_{j=2}^{n} a_{j}^{\prime \prime} x_{j}^{\prime \prime}$ ($i=2, \cdots, n$). Finally, if this process is continued, the resultant transformation converts the original system (1) into one with $a_{i j}=0$ for $i<j$. As a consequence, if the degree of $a_{i i}$ is d_{i}, then $\sum d_{i}=d$. By using another transformation of determinant unity we may assume that the degree of each $a_{i j}$ is at most d_{i}.

Let G_{1} be the set of all n-tuples $\left(s_{1}, \cdots, s_{n}\right)=s$ where the s_{i} are in $F[z]$ and have degree not greater than c; hence G_{1} is a linear set over F whose order $u_{1}=n(c+1)$. Write $L_{i}(s)$ for $\sum_{j=1}^{n} a_{i j} s_{j}$. Let G_{r} of order u_{r} over F be the linear subset of G_{1} composed of all quantities s for which L_{1}, \cdots, L_{r-1} all take values of degree not greater than c. Designate by P_{r} the set of all $L_{r}(s)$ with s in G_{r}, and by Q_{r} the set of all polynomials in P_{r} of degree not exceeding c. Since the maximum degree possible for a polynomial in P_{r} is $c+d_{r}$, the number of linearly independent polynomials of P_{r} which are not in Q_{r}, that is, the order of P_{r} / Q_{r}, is less than or equal to d_{r}. Now $G_{r} / G_{r+1} \simeq P_{r} / Q_{r}$, a fact which follows from the mapping of G_{r} on P_{r} and G_{r+1} on Q_{r}. Hence $\left[G_{1}: G_{n+1}\right] \leqq \sum_{i=1}^{n} d_{i}=d$. Therefore the order u_{n+1} of G_{n+1} is not less than $n(c+1)-d$. To be sure that G_{n+1} has elements other than zero, we must have $u_{n+1} \geqq 1$, that is, $n c=\sum c \geqq d+1-n$.

The following theorem applies if some of the L_{i} must be made equal to zero.

Theorem 2. If in Theorem 1 the first m of the L_{i} are to be made equal to zero and if their coefficients are in $F[z]$, then the conclusion will hold if $\sum_{i=m+1}^{n} c_{i}>d-(n-m)$.

For, the first m polynomials s_{i} must be zero if we have the transformed system used in the proof of Theorem 1. Application of Theorem 1 for the remaining L_{i} yields Theorem 2.

University of Chicago
g.c.d. of any finite number of elements exists and is linearly expressible in terms of those elements, that is, that every ideal with a finite basis is principal.

[^0]: ${ }^{1}$ Presented to the Society, April 13, 1940.
 ${ }^{2}$ See M. Deuring, Zur Theorie der Idealklassen in algebraischen Funktionenkörpern, Mathematische Annalen, vol. 106 (1932), pp. 103-106, for a related result. I believe the results I prove are new.
 ${ }^{3}$ A bibliography of both analytic and algebraic proofs of the theorem of Minkowski on linear forms is given by E. Jacobsthal, Der Minkowskische Linearformensatz, Sitzungsberichte Berliner mathematischen Gesellschaft, vol. 33 (1934), pp. 62-64. See also L. J. Mordell, Minkowski's theorem on homogeneous linear forms, Journal of the London Mathematical Society, vol. 8 (1933), pp. 179-192.
 ${ }^{4}$ The degree of a rational function is the degree of the numerator less that of the denominator. Zero is assigned the degree minus infinity.
 ${ }^{5}$ A. A. Albert, Normalized integral bases of algebraic number fields I, Annals of Mathematics, (2), vol. 38 (1937), p. 926 ff . The statement is proved for rational integral $c_{j k}$ but the proof applies to any integral domain having the property that a

