LINEAR FORMS IN FUNCTION FIELDS1

LEONARD TORNHEIM

We shall prove algebraically an analogue for function fields² of a well known theorem of Minkowski on linear forms.³

THEOREM 1. Let F be a field and z an indeterminate over F. Let

(1)
$$L_i = \sum_{i=1}^n a_{ij} x_j, \qquad i = 1, \dots, n,$$

be n linear expressions with coefficients a_{ij} in F(z) and with the determinant $|a_{ij}|$ of degree d. Then for any set of n integers c_1, \dots, c_n which satisfy the condition $\sum_{i=1}^n c_i > d-n$ there exists a set of values for x_1, \dots, x_n in F[z] and not all zero such that each L_i has degree at most c_i .

First, we may assume that all of the c_i are equal. For, suppose that c is the maximum of the c_i . Write L'_i for $L_i z^{c-c_i}$. The determinant of the coefficients of the L'_i has degree $d' = d + \sum_i (c - c_i) < \sum_i c + n$. If there is a set of values for x_1, \dots, x_n with the property that the degree of each L'_i is at most c_i , then these same values will make the degree of L_i at most c_i .

Next, we may assume, after multiplying each L_i by a suitable polynomial and by using an argument similar to that above, that all the a_{ij} are in F[z].

We shall now convert our system of L_i by means of a transformation of determinant unity with elements in F[z] into an equivalent system having $a_{ij}=0$ for i < j. Let b_1 be the g.c.d. of the a_{1j} ; then $b_1 = \sum_{j=1}^n a_{1j}c_{j1}$ for appropriate c_{j1} in F[z]. Necessarily the c_{j1} are relatively prime. It is possible to find other quantities c_{jk} ($k=2, \dots, n$) such that the determinant $|c_{jk}|$ has value unity. Thus the transfor-

¹ Presented to the Society, April 13, 1940.

² See M. Deuring, Zur Theorie der Idealklassen in algebraischen Funktionenkörpern, Mathematische Annalen, vol. 106 (1932), pp. 103–106, for a related result. I believe the results I prove are new.

³ A bibliography of both analytic and algebraic proofs of the theorem of Minkowski on linear forms is given by E. Jacobsthal, *Der Minkowskische Linearformensatz*, Sitzungsberichte Berliner mathematischen Gesellschaft, vol. 33 (1934), pp. 62-64. See also L. J. Mordell, *Minkowski's theorem on homogeneous linear forms*, Journal of the London Mathematical Society, vol. 8 (1933), pp. 179-192.

⁴ The degree of a rational function is the degree of the numerator less that of the denominator. Zero is assigned the degree minus infinity.

⁵ A. A. Albert, Normalized integral bases of algebraic number fields I, Annals of Mathematics, (2), vol. 38 (1937), p. 926 ff. The statement is proved for rational integral c_{ik} but the proof applies to any integral domain having the property that a

mation $x_i = \sum_{k=1}^n c_{jk} x_k'$ has determinant unity and hence it has a reciprocal transformation with elements in F[z]. The forms L_i are transformed into $L_i' = \sum_{k=1}^n a_{ik} x_k'$. Here $a_{ik}' = \sum_{j=1}^n a_{1j} c_{jk}$, and, being a linear combination of a_{1j} , it is divisible by their g.c.d. b_1 ; $a_{1k}' = b_1 a_k$. The transformation

$$x'_1 = x'_1 - \sum_{k=2}^n a_k x'_k, \quad x'_r = x''_r, \quad r = 2, \cdots, n,$$

of determinant unity transforms the L'_i into L''_i with $L''_i = b_i x'_i$.

The procedure is repeated for the n-1 linear forms $M_i = \sum_{j=2}^n a'_j x_i''$ $(i=2,\cdots,n)$. Finally, if this process is continued, the resultant transformation converts the original system (1) into one with $a_{ij}=0$ for i < j. As a consequence, if the degree of a_{ii} is d_i , then $\sum d_i = d$. By using another transformation of determinant unity we may assume that the degree of each a_{ij} is at most d_i .

Let G_1 be the set of all n-tuples $(s_1, \dots, s_n) = s$ where the s_i are in F[z] and have degree not greater than c; hence G_1 is a linear set over F whose order $u_1 = n(c+1)$. Write $L_i(s)$ for $\sum_{j=1}^n a_{ij} s_j$. Let G_r of order u_r over F be the linear subset of G_1 composed of all quantities s for which L_1, \dots, L_{r-1} all take values of degree not greater than c. Designate by P_r the set of all $L_r(s)$ with s in G_r , and by Q_r the set of all polynomials in P_r of degree not exceeding c. Since the maximum degree possible for a polynomial in P_r is $c+d_r$, the number of linearly independent polynomials of P_r which are not in Q_r , that is, the order of P_r/Q_r , is less than or equal to d_r . Now $G_r/G_{r+1} \simeq P_r/Q_r$, a fact which follows from the mapping of G_r on P_r and G_{r+1} on Q_r . Hence $[G_1:G_{n+1}] \leq \sum_{i=1}^n d_i = d$. Therefore the order u_{n+1} of G_{n+1} is not less than n(c+1)-d. To be sure that G_{n+1} has elements other than zero, we must have $u_{n+1} \geq 1$, that is, $nc = \sum c \geq d+1-n$.

The following theorem applies if some of the L_i must be made equal to zero.

THEOREM 2. If in Theorem 1 the first m of the L_i are to be made equal to zero and if their coefficients are in F[z], then the conclusion will hold if $\sum_{i=m+1}^{n} c_i > d - (n-m)$.

For, the first m polynomials s_i must be zero if we have the transformed system used in the proof of Theorem 1. Application of Theorem 1 for the remaining L_i yields Theorem 2.

University of Chicago

g.c.d. of any finite number of elements exists and is linearly expressible in terms of those elements, that is, that every ideal with a finite basis is principal.