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W. MAYER 

The well known inequalities of M. Morse have as algebraical foun­
dation the rank-equations 

rBiÇZ - SO = rBip) - r£<(Si) + rA(Si, 2) + rA_i(2i, 2), 

i = 0, 1, 2, • • • . 

These formulas hold for any topological group-system 2, any sub­
system Si of 2 , and the difference-system S —Si. (W. Mayer, Topo­
logische Gruppensysterne, Monatshefte für Mathematik und Physik, 
vol. 47 (1938); henceforth referred to as M, TG.) Here 5<(S) denotes 
the i-dimensional Betti group of S, while ^»(Si) and 5t-(S —Si) are 
these groups for Si and S —Si respectively. The symbol r( ), of 
course, stands for the rank of the group in the parentheses. By 
Z>t(Si, S) we mean the subgroup of JB»(2I) containing all the classes 
of this group whose elements bound in S. 

The formula (I) was first derived for the case of a complex in 
Lefschetz' Topology, 1930 (p. 150), and independently for the com­
plex modulo 2 by J. Rybarz, Monatshefte für Mathematik und 
Physik (1931). 

In the generality needed here the proof of (I) is given in M, TG 
(pp. 54-57), under the assumption, of course, that all the ranks ap­
pearing in (I) are finite, since otherwise the formula would be mean­
ingless. But the proof there given shows also that 

(a) r £ * ( S - S i ) = oo implies that either rJB,-(2) or r£>t_i(2i, S), or 
both, are infinite; 

(b) rBi(2i — Si) finite implies rZ)t_i(Si, S) finite, and if in addition 
rBi(Xi) is finite then rB{(2) is finite too; and 

(c) r J 3 < ( 2 - Z i ) = 0 implies rDM(Hu S ) = 0 and if in addition 
rjB<(2i) is finite, then rB<(2i) =rJ?<(2)+rZ?<(2i, S) . 

As an immediate consequence of equations (I) we notice the in­
equality 

(10 rBip) ^ rBi&i) + r5<(2 - 2 0 , 

which is true whenever the terms on the right are finite (remark (b)) 
and trivial otherwise. The next step in attaining the Morse inequali­
ties is the application of (I) to m+ 2 topological group-systems satis­
fying the inclusion relations 

(1) 2 w 32 m _iD • • . D 2 0 3 2 _ I 

838 
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with 2_x empty (all L»(2_i) being zero-groups). Assuming that all 
ranks involved are finite, we get by summation on k in 

r£,-(2* - 2*_i) = rBi&k) - r£<(S*-i) + rZ?,(S*_i, 2,) 

+ rA_i(2;t-i, 2 0 

the formula 

m 

J2 rBi&k - 2*-i) 

(3) " 

= r ^ ( 2 w ) + £ ' A ( V i , 2,) + rA'-i(2*-i, 2,), 

since all the ri3 t(2_i), rD t(2_i, 20) are zero, 2_x being empty. 
Let 2W be a neighborhood-space and let 2fc, & = m — 1, • • • , — 1, be 

subspaces of 2 m satisfying the inclusion relation (1). With the intro­
duction of singular simplices and chains modulo 2 each space 2^ gives 
rise to a topological group system, which we also denote by 2&. (The 
i-dimensional complexes Kl are the finite chains of singular simplices.) 
The relations (1) are then inclusion relations for the so-constructed 
group-systems 2*., and for these systems relation (3) will hold 
provided the ranks involved are finite. The finiteness of all these 
ranks will follow from the finiteness of those of the left side of (3), 
that is, of the 

rBi(2h - S i - i ) . 

If these are finite, we see from (2) that rB»(2o) ( = r^ t(20—2X)) is 
finite, and thus from (2) and remark (b) we conclude that r£i(2i) is 
finite. So, step-by-step, using (2) and remark (b) we find that all the 
ranks rBi(2,k) are finite. Since Pi(2fc_i, 2&) cBi(Sfc-i), the ranks of 
the groups Di are finite too. We have then the result : 

The equations (3) hold for the group-systems 2fc if only the ranks ap­
pearing on the left sides of these equations are finite. 

I t is an interesting fact, in view of its geometrical implications, 
that the finiteness of the ranks rBt(2 fc~2 fc_i) has as a consequence 
the finiteness of the Betti numbers rBt(2fc). As an additional remark 
it may be noticed that equations (3) can be written in the form of 
Morse's inequalities (of the strong type) if (3) holds for all indices i. 
Denoting by Mi the left sides of (3) : 

m 

(4) Mt = £ rBi$k - 2 ^ 0 , 
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and successively eliminating the sums with terms rDif we get 

M0 à -Ko, 

Mi- Mot Ri- Ro, 

(30 M2 - Mi + M o ^ R2 - Ri + Ro, 

Mn - Mn-i + • • • ± Mo = Rn - ^ , - i + ' • • ± Ro, 

where n is the dimension of the topological system 2 m and Ri stands 
for rBf-(2m), the ith Betti number of 2W. The inequalities (3'), how­
ever, are not fully equivalent to equations (3) since they result only 
if (3) holds for all the dimensions i from zero up to n, the dimension 
of 2m . In addition, in (3) the difference 

(Mi - Jlfi-i + • • • ± Mo) - (Ri - tf<-i + • • • ± Ro) 

is shown to be^rDi(Hk-i, 2&), which fact, of course, is of importance 
since it readily yields the conditions for the equality sign in (3'). 

A subdivision of the space 2 m by subspaces 2fc of 2m can be ob­
tained by the use of a real bounded function 3 defined on 2m . Let 
(To and Cm be the greatest lower and least upper bound of 3 respec­
tively, so that 

(5) trm ^ 3 ^ (To; 

then intermediate values cr&, & = 1, • • • , m — 1 , and o'_i<a'o may be 
introduced and subjected to the inequalities 

( 6 ) (Tm > (Tm-l > ' ' ' > <Tt > (To > <T-l 

if 3 is not constant on 2m . If 3 is constant, (6) can be reduced to 
(70>ö"_i. 

We now define the subspace 2fc as the set of all points P of 2W such 
that 3 ( P ) S(Tk, that is, symbolically, 

(7) 2* s { 3 ^ ^ } . 

(We observe that in this notation the subspace 2 m defined in (7) 
coincides with the space originally so denoted.) 

Constructing the corresponding topological group-systems, de­
noted likewise by 2 m (with 2_i consisting of zero groups only), we 
see that equations (3) hold if only the sum Mi of (4) is finite. This 
shows the full generality of these equations, in which only the concepts 
of neighborhood space and its partition by subspaces (not necessarily 
defined by a function 3 ) are used. (Later on the validity of formula 



I940] CRITICAL VALUE THEORY 841 

(3) will be shown for a partition of the space by a countable set of 
subspaces.) 

Let 2W be a compact Riemannian manifold and 3 a function of 
class C2 defined on Sm and having a finite number only of stationary 
points. Corresponding to these points there are a finite number of 
stationary values ak, k = 0, 1, • • • , ni, with (70 and <rm the absolute 
minimum and maximum respectively. Using these values in defining 
the 2k as previously described and denoting by the same letters Si 
the corresponding group-systems, we again arrive at equations (3), 
given the finiteness of their left sides Mi. 

Denote by Sfc the space of all points P of Sm with the property 
3»(P) <(Tk] then obviously S& c Si. 

By definition (Seifert-Threlfall, Variationsrechnung im Grossen, §4; 
we refer to this henceforth as S.T.) the type numbers w»(<r) for any 
value a of 3 are the ranks of the Betti groups of S(<r) —S((r), where 
S(<r) and S(<r) are the point sets {3 ^cr} and {3 <o*} respectively. The 
value a is called critical if some of the m^a) are different from zero. 

Only a stationary value (that is, a value belonging to a stationary 
point) can be critical, so that only for the stationary values akl 

& = 0, 1, • • • , m, are the type numbers 

(8) nii(ak) = rBi&K - Si) 

not all necessarily zero. In consequence of our assumption all the 
stationary points are isolated and thus their contribution to the corre­
sponding mi((Fk) will be finite (S.T., §10). Since only a finite number 
of stationary points belong to a stationary value <rk, nti(<rk) will be 
finite (S.T., p. 87). 

If therefore we can prove that 

(9) rBiÇZk - rk) = rBi(?k - 2J^,)f 

then not only is (3) verified, but its left side is shown to be the sum 
of all the type numbers of dimension i. Thus, in proving isomorphisms 
between the Betti groups of the systems 

(oik) Si — Si 

and 

(Pk) Si ~ Si_i 

for k = 0, 1, • • • , mt we likewise prove (9) and thereby (3). 
The above isomorphisms are included in the following two state­

ments: 
(a) Each class of B{( Si — Sfc_i) lies in a definite class of Bi{ Si — S&). 
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(b) Each class of J3i(2fc—2fc) contains one and only one class of 
J5»(2A; — 2&-I ) . 

Indeed, (a) and (b) establish a correspondence between the classes 
of the above groups which is obviously an isomorphism. 

As to the proof of the statements, (a) is almost self-evident, since 
an i-cycle of 2fc — 2/k_1 is an i-cycle of 2fc—2&, and an i-cycle of 
2*; — 2&_i which is homologous to zero in 2fc — 2*_i is easily seen to be 
an i-cycle of 2* — 2fc homologous to zero in 2& — 2fc. 

We now prove the first part of (b), that is, each class of J3t-(2& — 2fc) 
contains a class of i?i(2fc— 2fc_i). This is by no means evident, and to 
prove it we must make use of ^-deformations, which in the case we 
are considering will exist. Suppose given {Z1} c.B4-(2& —2 t ) ; then 
there exists a Kl~l c 2& such that 

(10) R(Z{) = Kl~\ 

But, on the compact point set Kl~l
y the continuous function 3> 

has somewhere a maximum which, of course, is smaller than a^, 
(K*-1 c 2*). Thus K*-1 lies in some 2* defined by {3 é<rk-e}, where 
€ > 0 may be so chosen that (rfc — €>o-/c_i. Then (S.T., p. 87) an 3-de-
formation exists which carries the point set {3 S ak — e} into the point 
set {-3 = 0*-i}- Thus there exist a f f o n { 3 = ^ —e} and a Kl{~1 on 
{3^0V_i} such that 

(11) R(K) = K{~1 + KÎ~\ 

Adding (10) to (11) we get 

(12) R(Z* + K*) = K[~\ 

thus showing that Z'l+K\ a cycle of the class {Z{} of £t-(2& — 2É), 
is a cycle of 2& — 2&_i. Hence \Zl\ contains this cycle of 2fc—2&__i, 
and, according to (a), the class of Bi(2& —2fc_i) it represents. 

We finally prove the second part of (b), namely: Each class of 
22i(2fc —2 t) contains only one class of 5^(2^—2fc_i). This again fol­
lows from the statement: If a cycle Z* of 2fc — 2fc_i considered as a 
cycle of 2fc — 2fc is homologous to zero in 2^—2*, then this cycle will 
be homologous to zero in 2* —2fc_i. For this proof one must again 
make use of the 3-deformation mentioned above. Let Z{ be a cycle 
of 2fc—2fc_i homologous to zero in 2* —2ft; then there exist a Ki+l 

in 2/fc and a K* in 2* such that 

(13) RiK*1) = Z* + K\ 

which shows that Z*~0 in 2& —2*. Furthermore there will exist a 
Kl~l in 2fc_! such that 
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(14) R(7J) = IO-\ 

since Z{ is a cycle of 2*— 2fc_i. From (13) and (14) follows 

(15) R(K*) = i^'"1. 

The compact set Kl of 2fc, (3<(rjb), will lie in some {^^o^ — e}. 
Using the ^-deformation carrying {^^o^ — e} into {^^^V-i}» we 
establish the existence of a chain K[+1 of {3 = ^ ~" €} and two chains 
K[ and Lj of {3> ^ ov_i} satisfying the relation 

(16) R(KÎ+1) = K* + Kl + LÎ, 

where L[, as the deformation chain of RiK^—K1'1 (which lies in 
2*_i) will lie in 2fc_i, by definition of an 3-deformation. Adding the 
two relations (13) and (16), we get finally 

(17) R(Ki+1 + K[+1) =Z{+ K\ + L[, 

where K\+L\ c 2 ^ and Ki+1+K[+1 c 2*. This proves that Z*~0 in 
2fc — 2&_i. 

We add that in proving (9) we made no use of the fact that either 
of the values <Tk or a&_i was stationary. We used only the existence 
of the above mentioned ^-deformations, and these will always exist 
provided only that between <Jk and ov-i there are no stationary values. 
Given this condition, (9) always holds (of course, in the form 0 = 0 
when crk is not a stationary value). 

The theory so far developed is unable to deal with the concept of 
the "variational calculus in the large," since in this case the function 
3 defined on 2 is unbounded above. We now adapt the theory to that 
case. 

First we prove the following lemma : 

LEMMA. For three group-systems 2 a , a= 1, 2, 3, satisfying the inclu­
sion relations 

(18) ZiCSsCSs, 

the relation 

(19) rDi&u 23) ^ rA(2 l f 22) + rA(22 , 23) 

holds. 

PROOF. Each class of Z)»(2i, 23) is contained in a definite class of 
Z?»(22, 23) since each cycle of 2X bounding in 2 3 is a cycle of 22 

bounding in 2 3 and each cycle of 2i bounding in 2i is a cycle of 22 

bounding in 22. By correlating with an element of -D»-(2i, 23) that 
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element of £>;(22, S3) which contains it, we define a homomorphism, 

(20) A (s 1 , s 3 )~>A( r 2 , s3), 

whose kernel group is the subgroup of -D»(2i, S3) consisting of all 
classes bounding in S2, hence JD»(2I, S2). Denoting the map-group 
of the homomorphism by Dl (S2, S3) we have the isomorphism 

(21) A(2 i , 23) - DiÇEh S2) « ZV (S2, S3) 

and the rank-equation 

(22) rAGSi, S3) = rA(2 l f S2) + rD/ (S2, S3), 

whence (19) follows (since £>/(S2, 28) cZ><(22, S3)). 
Combining (I) and (19) we derive 

(23) r£,(S, - Sx) ^ r£,(23 - S2) + r3<(S* - Si), 

thus showing that in subdividing a given partition we never decrease 
the sum Mi. 

As for the validity of the proof given for (23), we have to establish 
the legality of the use of formula (I). This use will indeed be legiti­
mate if the rank equations (I) hold for 5 t ( S 3 —S2) and J B ; ( 2 2 - - 2 ] ) , 

since then all ranks in (I) for 2 = 2 3 are finite, by remark (a) of page 
838 and equation (19), and the employment of (I) is thus justified for 
all the three Betti groups appearing in (23). This condition will in 
fact be satisfied whenever (23) is used in the sequel. 

Equation (23), however, is true without restrictions, as we show 
by the use of a formula of a more general type, namely, (4') of 
page 46 in M, TG. By this formula, (18) implies the isomorphism 
S 3 — S 2 « ( S 3 —Si) —(S2 —Si) which generalizes a well known group-
isomorphism to group-systems. Using (I ') for the replacement of S 
and Si by 2 3 — Si and 22 — 2i respectively we again arrive at formula 
(23), but now without any restriction. 

After this remark we extend the proof of formula (3). Let the space 
S be subdivided by a countable set of subspaces S&, k= —1,0, 1, • • -, 
satisfying the inclusion relation 

(24) S _ i C l 0 c S i C • • • c 2 m c • • • c 2 

with S__i empty and ]Cm=o(2m) = S (we write 2 = 2*). Then formula 
(3) holds for an infinite but bounded sum 

00 

(25) Mi = X rBi(?k - S*_0 
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if only the partition satisfies an additional assumption on its topologi­
cal nature, namely: 

(C) Any compact point set of 2 lies in some 2& (k^ °°). 

As a matter of fact, (C) is satisfied if the partition (24) is defined 
by the level surfaces of a continuous real function 3 unbounded 
above, the subspace 2& being the set of all points P such that 
3K-P) = ak a n d <T-i <o*o <o*i < • • • being an unbounded sequence, with 
cr_! < 3 ( P ) for all points P of 2 . 

Since by assumption Mi is finite, the left side of (3) will be finite, 
and thus (3) holds for any m. Thus each sum 

m m 

(26) £ rZ>,(2*-i, 2*), £ rö*-i(2*-i, S.) 

in (3), being not larger than Mi, converges as m—»<*>. As a further 
consequence, rBiÇLm) also converges as m—><n : 

(27) limr£<(2w) = R{. 

If only we can show that Rl = rB»(2), we shall have proved for­
mula (3) for m — oo, that is, 

oo oo 

(28) Mi = Ri+Y. rDi&t-!, 2*) + £ rZ><_i(2*_i, 2*), 

writing Ri = rBi( 2 ) . 
Due to the convergence of the sequences (26) and (27), all of whose 

terms—as ranks—are positive integers, or zeros, there exists an in­
teger N such that f or k è N 

rBi(Xk - 2*_t) = 0, rDiÇZk_h 2,) = 0, 

rD<_i(2*-i, 2,) - 0, rBiÇ2h) - R/ = 0. 

Consequently, for h>k>N the right-hand terms of the inequality 

h 

(30) rBi(2h - 2») ^ £ r£<(2, - 2y_x) 

are zero, so that 

(31) rBtÇSh - 2*) = 0, 

From (31) and the assumption (C) we easily conclude that for k>N 

(32) rBtÇS - 2,) = 0. 
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In fact, (32) is proved if, for any C{ representing an element of 
Bi(X — S*), we can show that C*~0 in S — 2*. As a compact set on 2 , 
(C* c 2 with R(Cl) c 2*), Cl lies in some 2h

D 2fc, and thus represents 
an element of JB»(2A—2&) . But since this group has the rank zero, 
by (31), C {~0 in 2 ^ - 2 * . Therefore there exists a Ki+l and a Kl 

satisfying 

(S3) K«lcTh9 ^ c S , , 

such that 

(34) R(Ki+1) =a+ JT'; 

this shows that C*~0 in 2 — 2A; and proves (32). 
Using (32) in connection with the main formula (I) we have for 

k>N 

(35) 0 = rBiÇZ) - rJ3<(2*) + rDi&ht2) + rZ><_i(2*f 2). 

Remark. The use of (I) is again justified, since all ranks involved are 
finite. (For rB,(2) and rD»_i(2fc, 2) see remark (b) on page 838; re­
member also that nBi(2/c) = i ? / and rJ9*(2fc, 2) ^fJ3»(2fc).) According 
to our remark (c) on page 838 we have r.Dt-_i(2jfc, 2 ) = 0 in formula 
(35). We shall prove that in addition rDi(2k, 2) = 0 . 

This again is shown if for any C{ representing an element of 
Di(2ki 2) we can prove that C'^O in 2*. Let Cl be such an element; 
then there exists a Ki+l such that 

(36) C* = R(K**-l)t O'cS*. 

But, again, the compact set Ki+1 lies in some 2^ 3 2^, and thus C* 
represents an element of -D»(2fc, 2*), whose rank is not larger than 

h-i 

2 ) r A ( 2 / , S / + i ) = 0. 

Therefore rZ>t(2fc, 2^ )=0 , so that Cl is homologous to zero in 2*, 
which was to be proved. 

This shown, (35) reduces to 

(37) rBtpk) = rBip), k > N, 

thus proving (28). 
If for the concept of variational calculus in the large (ƒ(#, x') posi­

tive definite and of class C2) we restrict ourselves to the case where 
only a finite number of stationary points (extremals) are below any 
3-level (3 = fPf(x, x')dt>0) and if the sequence crk, k = 0, 1, • • • , un-
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bounded above, includes all the stationary values, then 3-deforma-
tions exist (S.T., p. 66), and can be used to prove homomorphisms 
between the systems (ak) and (fik) on page 841 in exactly the same 
way as before. 

Hence (9) will hold, and again the type numbers 

(38) mi(ak) = rBiÇL* - 2,) 

are finite (S.T., §14, Theorem II and §17, Theorem II), so that (3) 
is true for any m. 

In taking the sum Mi= 2)Wi(crfc), only critical values ak (by their 
definition) add nonzero terms, and if noncritical values a were used 
in the construction, they can be omitted in writing Mi. Hence for 
this case too the Morse equations hold for a finite Mi. 

Remark. If, in the case just considered, for any two subspaces 2 ' , 
2 " of 2 the ranks of X><(2', 2 " ) and Z>i-i(2', 2 " ) are zero ( 2 ' c 2 " ) , 
then Mi = Ri. For finite Mi, of course, this follows from (28), but for 
infinite Mi we have to prove the statement. First, from (I)—or more 
exactly from the proof leading to (I)—we have, for any1 k 

(39) rBiÇZ) è rBiÇEk); 

then for any m we have 

m 

(40) £ rBi(Zk - S*-!) = rJBiÇ,»). 

Since the left side of (40) diverges for w—>oo, so does rJB»-(2TO) di­
verge, and hence, by (39), rBiÇL) cannot be finite. 

INSTITUTE FOR ADVANCED STUDY 

1 In fact, we have ft(S-2*) « ft(Z)-Fi(S, 2*), # (2 , 2*) « f t ( 2 0 (M, TG, pp. 
55-57). 


