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E. H. Moore's theorem on the transitivity of modularity is as fol­
lows: Consider the basis1 31, $ , e; if a positive hermitian matrix e0 

is modular as to e €, then every vector which is modular as to €0is 
modular2 as to e (that is, Wfl€0 c 2)?€). 

In his doctoral thesis, the author establishes the converse of the 
preceding theorem as a consequence of the Hellinger-Toeplitz theo­
rem.3 In this note, we give a new proof for the converse of the transi­
tivity of modularity, and then deduce the generalized Hellinger-
Toeplitz theorem as a corollary. The converse of the transitivity of 
modularity is, therefore, equivalent to the Hellinger-Toeplitz theo­
rem. We also establish the converse of the transitivity of modularity 
for matrices, and a theorem on the transitivity of accordance and 
finiteness. 

THEOREM I. Consider the basis 31, ty, e; and let e0 be a positive hermi­
tian matrix. Then the following assertions are equivalent : 

(1) every vector fx0 modular as to e0 is modular as to e; 
(2) €0 is modular as to e e0; 
(3) e0 is modular as to e e. 

If one of the preceding conditions is satisfied, the modulus of e0 as to e € 
is equal to the norm of e0 as to e €0. 

In the course of demonstration, we let $D?o denote the space of vec­
tors fi0 modular as to €o; /o , the integration process based on €oî 
and Mo, the modulus as to eo. Similar interpretations are given to the 
symbols 2)?, / , M, for the base matrix €. A vector which is finite as 
to e is denoted by /3. 

If every JJL0 is modular as to e, the matrix e0 is of type SftoStt- Then 
JeojS is in SDÎo for every 0, and Jo(//3e0)Mo = //3JoeoMo = JfiVo for every 
pair ]8, /JL0. Consequently, for every /3, MoJe^fi is equal to the least 
upper bound of |//3MO| for all ju0 such that MoMo^l, by part (2) of 
Theorem (41.9) in G.A. Similarly, for every /z0, which is modular as 
to e by hypothesis, M/x0 is equal to the least upper bound of | /ftuo| 

1 E. H. Moore, General Analysis (G.A. for abbreviation), Part I, p. 4, and Part II, 
p. 84. 

2 Theorem (46.4), part (1) in G.A., II, p. 137. 
3 Spaces associated with non-modular matrices with applications to reciprocals, Chi­

cago thesis, 1931, pp. 3-9. The same proof is given in G.A., II, p. 193. 
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for all j8 such that ikf/3^ 1. If the class 8 is identified as the class of 
vectors 0 such that ikf/3^1, and Fh on Sfto to 9t, is defined to be 
(|/|5/xo| |Mo) for every Z = j5, then by Theorem (53.55) in G.A.,4 the 
upper bound of MQJ€Q(3, for all /3 finite as to e such that M/3^1 , is 
finite. By Theorem (46.85) in G.A., €o is modular as to e0 e. Since €o 
is hermitian, e0 is also modular5 as to e €o. 

When condition (2) is true, then condition (3) is secured by a sim­
ple application6 of the composition of modularity7 to €o = /o€o€o. That 
the last condition implies the first is proved in Theorem (46.4) of 
Moore's G.A. 

From €o = /o€o€o and part (2) of Theorem (46.9) in G.A., we have 
iVeoC€0 = M€€Joe0eo = Me€e0. This completes the proof. 

The hypothesis of the preceding theorem is assumed for the fol­
lowing corollary : 

COROLLARY. Let SDîo* consist of all /*o whose moduli as to e0 are 
bounded by a fixed constant. If 2JZ0* is a subset of SDÎ, then the moduli 
as to € of all vectors in 9ft0* are also bounded. 

We may assume, without losing generality, that the moduli of all 
vectors in 5D?0* are at most unity. Since the spaces 9Jio and SDÎ are 
linear, the condition that every ju0 for which Mo/xo ^ 1 is modular as 
to e is equivalent to condition (1) in the preceding theorem. Conse­
quently Co is modular as to e e0. The equation Mo = /o€oMo gives, by 
Theorem (46.7) in G.A., that M J U 0 ^ M « 0 € O whenever ikfoMo^l. 

THEOREM I I . Consider the basis 21, $ \ s#2, e \ e2; and let ej, e2 be 
two positive hermitian matrices. Then the following assertions are equiva­
lent: 

(1) every matrix K12 modular as to ej e2 is of type fflî1^2; 
(2) el is modular as to e1 e1, and e2 is modular as to e2 e2; 
(3) every matrix K12 modular as to ej e2 is modular as to e1 e2. 

For the demonstration of the theorem, we shall show that 
(1)—>(2)—>(3)—>(1). The second implication is proved in part (2) of 
Theorem (46.4) in G.A. The last implication follows from the fact 
that every matrix K12 modular as to e1 e2 is of type SDî1^2. To show 

4 See also Hildebrandt, On uniform limitedness of sets of functional operations, 
this Bulletin, vol. 29 (1923), pp. 309-315; Fréchet, Sur les fonctionelles bilinêaires, 
Transactions of this Society, vol. 16 (1915), pp. 217-218. 

6 By a similar reasoning, we may, of course, deduce the Hellinger-Toeplitz theo­
rem as a consequence of Theorem (53.55). 

6 See the author's thesis, loc. cit., p. 8, or Moore, G.A., II, p. 193. 
1 Moore, G.A., II, p. 144. 



354 Y. K. WONG [April 

the first implication, consider any /xj, /Xo^O2 which are modular as to 
ej, €Q respectively, Theorem (47.2) in G.A. shows that JUJ/ZQ is modular 
as to e1 e2, and hence by hypothesis, JJL]JII is of type 9ftx9ft2. Since 
ju27^02, let a^fj,2(p2) T^O. Then )uja, and hence juj, is modular as to e1. 
This proves that every /4 modular as to ej is modular as to e1. By 
Theorem I, ej is modular as to e1 e1. Similarly, we prove that e% is 
modular as to e2 e2. The proof was suggested by Dr. Coral. 

THEOREM I I I . (Generalized Hellinger-Toeplitz theorem.) Consider 
the basis 31, Ç1, *$2, e1, e2. A matrix K12 is modular as to e1 e2 if and only 
if K12 is by rows of 9ft2 and J2K12IX2 is modular as to é-for every /z2. 

To prove the theorem, we make use of the fact that K12 is modular 
as to e1 e2 if and only if the following condition holds: 

(M) K12 is by rows of 9ft2, and J2K12K*21 is modular as to e1 e1. 

This is Theorem (46.9) in G.A., with the omission of the redundant 
condition that K12 is by columns accordant as to e1. (For when K12 sat­
isfies the conditions (M), K12 is by columns A \ To prove this, we note 
that J W 2 1 is A11 by Theorem (46.65) in G.A. Consequently, when 
Sle'al = 0\ then J2(Sl

aâ
lK12, S\K*21OL1) =5i5iâ 1JV 2 /c* 2 1a 1 = 0, which 

implies that SlalK12 = 02, since J2 is proper. Thus K12 is by columns 
-41.) Consequently, it suffices to prove the following statement: When 
K12 is by rows of 9ft2, the matrix J W 2 1 is modular as to e1 el if and only 
if J2K21fx2 is modular as to exfor every IJL2. 

Using the notation introduced by E. H. Moore in his study of gen­
eralized Fourier theory, we denote the positive hermitian matrix 
j2K2iK*2i ky €i„, j t w a s shown by Moore that the space of vectors 
modular as to ej* is equal8 to the space of vectors J2KX2\X2 for all \x2 

in 9ft2. When K12 is assumed to be by rows of 9ft2, the assertion that 
J2K12IX2 is modular as to e1 for every ju2 is equivalent to the assertion 
that every vector modular as to el* is modular as to e1. By Theorem I, 
the latter assertion is valid if and only if ej* is modular as to e1 e1. 
This proves the theorem. 

The basis stated in the preceding theorem is assumed for the fol­
lowing corollary : 

COROLLARY. Suppose that K12 is by rows of 9ft2. Then K12 is modular 
as to e1 e2 if and only if every vector modular as to J2K12K*21 is modular 
as to e1. 

The transitivity for accordance and finiteness is stated in the fol­
lowing theorem : 

8 Moore, G. A., I, p. 22. 
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THEOREM IV. Consider the basis SÏ, $ , e and let e0 be a positive 
hermitian matrix. Then 

(a) every vector accordant as to €0 is accordant as to e if and only if e0 

is accordant as to e e ; 
(b) every vector finite as to e0 is finite as to e if and only if e0 is of 

type FF. 

In part (a), if every vector accordant as to €0 is accordant as to €, 
then e0, being of type AoA0, is of type A A. By Theorem (46.5) in 
G.A., e0 is accordant as to e e. Conversely every vector £ accordant 
as to e0 satisfies the relation £==/<)€<)£ ==£*/<)€o£r. Now /o€o£<r, being a 
finite (right) linear combination of the columns of e0, is a vector ac­
cordant as to e for every <r. By Theorem (48.2) in G.A., £ is accordant 
as to e. Part (b) is an immediate consequence of the definition of 
finiteness. 
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