ON THE CONVERSE OF THE TRANSITIVITY OF MODULARITY

Y. K. WONG

E. H. Moore's theorem on the transitivity of modularity is as follows: Consider the basis¹ \mathfrak{A} , \mathfrak{B} , ϵ ; if a positive hermitian matrix ϵ_0 is modular as to ϵ , then every vector which is modular as to ϵ_0 is modular² as to ϵ (that is, $\mathfrak{M}_{\epsilon_0} \subset \mathfrak{M}_{\epsilon}$).

In his doctoral thesis, the author establishes the converse of the preceding theorem as a consequence of the Hellinger-Toeplitz theorem.³ In this note, we give a new proof for the converse of the transitivity of modularity, and then deduce the generalized Hellinger-Toeplitz theorem as a corollary. The converse of the transitivity of modularity is, therefore, equivalent to the Hellinger-Toeplitz theorem. We also establish the converse of the transitivity of modularity for matrices, and a theorem on the transitivity of accordance and finiteness.

THEOREM I. Consider the basis \mathfrak{A} , \mathfrak{P} , ϵ ; and let ϵ_0 be a positive hermitian matrix. Then the following assertions are equivalent:

- (1) every vector μ_0 modular as to ϵ_0 is modular as to ϵ ;
- (2) ϵ_0 is modular as to ϵ ϵ_0 ;
- (3) ϵ_0 is modular as to ϵ ϵ .

If one of the preceding conditions is satisfied, the modulus of ϵ_0 as to ϵ is equal to the norm of ϵ_0 as to ϵ ϵ_0 .

In the course of demonstration, we let \mathfrak{M}_0 denote the space of vectors μ_0 modular as to ϵ_0 ; J_0 , the integration process based on ϵ_0 ; and M_0 , the modulus as to ϵ_0 . Similar interpretations are given to the symbols \mathfrak{M} , J, M, for the base matrix ϵ . A vector which is finite as to ϵ is denoted by β .

If every μ_0 is modular as to ϵ , the matrix ϵ_0 is of type $\mathfrak{M}_0\overline{\mathfrak{M}}$. Then $J\epsilon_0\beta$ is in \mathfrak{M}_0 for every β , and $J_0(J\bar{\beta}\epsilon_0)\mu_0=J\bar{\beta}J_0\epsilon_0\mu_0=J\bar{\beta}\mu_0$ for every pair β , μ_0 . Consequently, for every β , $M_0J\epsilon_0\beta$ is equal to the least upper bound of $|J\bar{\beta}\mu_0|$ for all μ_0 such that $M_0\mu_0 \leq 1$, by part (2) of Theorem (41.9) in G.A. Similarly, for every μ_0 , which is modular as to ϵ by hypothesis, $M\mu_0$ is equal to the least upper bound of $|J\bar{\beta}\mu_0|$

¹ E. H. Moore, General Analysis (G.A. for abbreviation), Part I, p. 4, and Part II, p. 84.

² Theorem (46.4), part (1) in G.A., II, p. 137.

⁸ Spaces associated with non-modular matrices with applications to reciprocals, Chicago thesis, 1931, pp. 3-9. The same proof is given in G.A., II, p. 193.

for all β such that $M\beta \leq 1$. If the class \mathfrak{L} is identified as the class of vectors $\bar{\beta}$ such that $M\beta \leq 1$, and F_l , on \mathfrak{M}_0 to \mathfrak{N} , is defined to be $(|J\bar{\beta}\mu_0||\mu_0)$ for every $l=\bar{\beta}$, then by Theorem (53.55) in G.A.,⁴ the upper bound of $M_0J\epsilon_0\beta$, for all β finite as to ϵ such that $M\beta \leq 1$, is finite. By Theorem (46.85) in G.A., ϵ_0 is modular as to ϵ_0 ϵ . Since ϵ_0 is hermitian, ϵ_0 is also modular⁵ as to ϵ ϵ_0 .

When condition (2) is true, then condition (3) is secured by a simple application 6 of the composition of modularity 7 to $\epsilon_0 = J_0 \epsilon_0 \epsilon_0$. That the last condition implies the first is proved in Theorem (46.4) of Moore's G.A.

From $\epsilon_0 = J_0 \epsilon_0 \epsilon_0$ and part (2) of Theorem (46.9) in G.A., we have $N_{\epsilon_0 \epsilon} \epsilon_0 = M_{\epsilon \epsilon} J_0 \epsilon_0 \epsilon_0 = M_{\epsilon \epsilon} \epsilon_0$. This completes the proof.

The hypothesis of the preceding theorem is assumed for the following corollary:

COROLLARY. Let \mathfrak{M}_{0*} consist of all μ_{0} whose moduli as to ϵ_{0} are bounded by a fixed constant. If \mathfrak{M}_{0*} is a subset of \mathfrak{M} , then the moduli as to ϵ of all vectors in \mathfrak{M}_{0*} are also bounded.

We may assume, without losing generality, that the moduli of all vectors in \mathfrak{M}_{0^*} are at most unity. Since the spaces \mathfrak{M}_0 and \mathfrak{M} are linear, the condition that every μ_0 for which $M_0\mu_0 \leq 1$ is modular as to ϵ is equivalent to condition (1) in the preceding theorem. Consequently ϵ_0 is modular as to ϵ ϵ_0 . The equation $\mu_0 = J_0 \epsilon_0 \mu_0$ gives, by Theorem (46.7) in G.A., that $M\mu_0 \leq M_{\epsilon\epsilon_0} \epsilon_0$ whenever $M_0\mu_0 \leq 1$.

THEOREM II. Consider the basis \mathfrak{A} , \mathfrak{P}^1 , \mathfrak{P}^2 , ϵ^1 , ϵ^2 ; and let ϵ_0^1 , ϵ_0^2 be two positive hermitian matrices. Then the following assertions are equivalent:

- (1) every matrix κ^{12} modular as to ϵ_0^1 ϵ_0^2 is of type $\mathfrak{M}^1\overline{\mathfrak{M}}^2$;
- (2) ϵ_0^1 is modular as to ϵ^1 ϵ^1 , and ϵ_0^2 is modular as to ϵ^2 ϵ^2 ;
- (3) every matrix κ^{12} modular as to ϵ_0^1 ϵ_0^2 is modular as to ϵ^1 ϵ^2 .

For the demonstration of the theorem, we shall show that $(1)\rightarrow(2)\rightarrow(3)\rightarrow(1)$. The second implication is proved in part (2) of Theorem (46.4) in G.A. The last implication follows from the fact that every matrix κ^{12} modular as to ϵ^1 is of type $\mathfrak{M}^1\overline{\mathfrak{M}}^2$. To show

⁴ See also Hildebrandt, On uniform limitedness of sets of functional operations, this Bulletin, vol. 29 (1923), pp. 309-315; Fréchet, Sur les fonctionelles bilinéaires, Transactions of this Society, vol. 16 (1915), pp. 217-218.

⁵ By a similar reasoning, we may, of course, deduce the Hellinger-Toeplitz theorem as a consequence of Theorem (53.55).

⁶ See the author's thesis, loc. cit., p. 8, or Moore, G.A., II, p. 193.

⁷ Moore, G.A., II, p. 144.

the first implication, consider any μ_0^1 , $\mu_0^2 \neq 0^2$ which are modular as to ϵ_0^1 , ϵ_0^2 respectively, Theorem (47.2) in G.A. shows that $\mu_0^1 \overline{\mu}_0^2$ is modular as to ϵ^1 ϵ^2 , and hence by hypothesis, $\mu_0^1 \overline{\mu}_0^2$ is of type $\mathfrak{M}^1 \overline{\mathfrak{M}}^2$. Since $\mu^2 \neq 0^2$, let $a \equiv \mu^2(p^2) \neq 0$. Then $\mu_0^1 \cdot a$, and hence μ_0^1 , is modular as to ϵ^1 . This proves that every μ_0^1 modular as to ϵ_0^1 is modular as to ϵ^1 . By Theorem I, ϵ_0^1 is modular as to ϵ^1 . Similarly, we prove that ϵ_0^2 is modular as to ϵ^2 ϵ^2 . The proof was suggested by Dr. Coral.

THEOREM III. (Generalized Hellinger-Toeplitz theorem.) Consider the basis \mathfrak{A} , \mathfrak{P}^1 , \mathfrak{P}^2 , ϵ^1 , ϵ^2 . A matrix κ^{12} is modular as to ϵ^1 ϵ^2 if and only if κ^{12} is by rows of $\overline{\mathfrak{M}}^2$ and $J^2\kappa^{12}\mu^2$ is modular as to ϵ^1 for every μ^2 .

To prove the theorem, we make use of the fact that κ^{12} is modular as to ϵ^1 ϵ^2 if and only if the following condition holds:

(M) κ^{12} is by rows of $\overline{\mathfrak{M}}^2$, and $J^2\kappa^{12}\kappa^{*21}$ is modular as to ϵ^1 ϵ^1 .

This is Theorem (46.9) in G.A., with the omission of the redundant condition that κ^{12} is by columns accordant as to ϵ^1 . (For when κ^{12} satisfies the conditions (M), κ^{12} is by columns A^1 . To prove this, we note that $J^2\kappa^{12}\kappa^{*21}$ is A^{11} by Theorem (46.65) in G.A. Consequently, when $S^1_\sigma\epsilon^1\alpha^1=0^1$, then $J^2(S^1_\sigma\bar{\alpha}^1\kappa^{12},\ S^1_\sigma\kappa^{*21}\alpha^1)=S^1_\sigma S^1_\sigma\bar{\alpha}^1J^2\kappa^{12}\kappa^{*21}\alpha^1=0$, which implies that $S^1_\sigma\bar{\alpha}^1\kappa^{12}=0^2$, since J^2 is proper. Thus κ^{12} is by columns A^1 .) Consequently, it suffices to prove the following statement: When κ^{12} is by rows of $\overline{\mathbb{M}}^2$, the matrix $J^2\kappa^{12}\kappa^{*21}$ is modular as to ϵ^1 if and only if $J^2\kappa^{21}\mu^2$ is modular as to ϵ^1 for every μ^2 .

Using the notation introduced by E. H. Moore in his study of generalized Fourier theory, we denote the positive hermitian matrix $J^2\kappa^{21}\kappa^{*21}$ by ϵ_{κ}^{1} . It was shown by Moore that the space of vectors modular as to ϵ_{κ}^{1} is equal⁸ to the space of vectors $J^2\kappa^{12}\mu^2$ for all μ^2 in \mathfrak{M}^2 . When κ^{12} is assumed to be by rows of $\overline{\mathfrak{M}}^2$, the assertion that $J^2\kappa^{12}\mu^2$ is modular as to ϵ^1 for every μ^2 is equivalent to the assertion that every vector modular as to ϵ_{κ}^{1} is modular as to ϵ^{1} . By Theorem I, the latter assertion is valid if and only if ϵ_{κ}^{1} is modular as to ϵ^{1} ϵ^{1} . This proves the theorem.

The basis stated in the preceding theorem is assumed for the following corollary:

COROLLARY. Suppose that κ^{12} is by rows of $\overline{\mathbb{M}}^2$. Then κ^{12} is modular as to ϵ^1 ϵ^2 if and only if every vector modular as to $J^2\kappa^{12}\kappa^{*21}$ is modular as to ϵ^1 .

The transitivity for accordance and finiteness is stated in the following theorem:

⁸ Moore, G. A., I, p. 22.

THEOREM IV. Consider the basis \mathfrak{A} , \mathfrak{P} , ϵ and let ϵ_0 be a positive hermitian matrix. Then

- (a) every vector accordant as to ϵ_0 is accordant as to ϵ if and only if ϵ_0 is accordant as to ϵ ϵ :
- (b) every vector finite as to ϵ_0 is finite as to ϵ if and only if ϵ_0 is of type $F\overline{F}$.

In part (a), if every vector accordant as to ϵ_0 is accordant as to ϵ , then ϵ_0 , being of type $A_0\overline{A}_0$, is of type $A\overline{A}$. By Theorem (46.5) in G.A., ϵ_0 is accordant as to ϵ ϵ . Conversely every vector ξ accordant as to ϵ_0 satisfies the relation $\xi = J_0\epsilon_0\xi = L_\sigma J_0\epsilon_0\xi_\sigma$. Now $J_0\epsilon_0\xi_\sigma$, being a finite (right) linear combination of the columns of ϵ_0 , is a vector accordant as to ϵ for every σ . By Theorem (48.2) in G.A., ξ is accordant as to ϵ . Part (b) is an immediate consequence of the definition of finiteness.

THE UNIVERSITY OF CHICAGO