ON THE CONVERSE OF THE TRANSITIVITY OF
MODULARITY

Y. K. WONG

E. H. Moore’s theorem on the transitivity of modularity is as fol-
lows: Consider the basis! ¥, B, €; if a positive hermitian matrix e
is modular as to € ¢, then every vector which is modular as to ¢yis
modular? as to € (that is, M., c M.).

In his doctoral thesis, the author establishes the converse of the
preceding theorem as a consequence of the Hellinger-Toeplitz theo-
rem.? In this note, we give a new proof for the converse of the transi-
tivity of modularity, and then deduce the generalized Hellinger-
Toeplitz theorem as a corollary. The converse of the transitivity of
modularity is, therefore, equivalent to the Hellinger-Toeplitz theo-
rem. We also establish the converse of the transitivity of modularity

for matrices, and a theorem on the transitivity of accordance and
finiteness.

THEOREM 1. Consider the basis N, B, €; and let €, be a positive hermi-
tian matrix. Then the following assertions are equivalent:

(1) every vector u, modular as to €y is modular as to e;

(2) € is modular as to € €;

(3) €0 is modular as to € e.
If one of the preceding conditions is satisfied, the modulus of e, as to € €
is equal to the norm of € as to € .

In the course of demonstration, we let I, denote the space of vec-
tors uo modular as to €; Jo, the integration process based on e;
and M,, the modulus as to €. Similar interpretations are given to the
symbols M, J, M, for the base matrix e. A vector which is finite as
to eis denoted by 8.

If every o is modular as to ¢, the matrix € is of type M M. Then
JeoB is in M, for every B, and Jo(JBeo) o= JBTs€opo=JBuo for every
pair B3, uo. Consequently, for every B, MoJe)B is equal to the least
upper bound of IJE,uo| for all uo such that Mou=1, by part (2) of
Theorem (41.9) in G.A. Similarly, for every uo, which is modular as
to € by hypothesis, Mu, is equal to the least upper bound of | Jﬁ_pol

L E. H. Moore, General Analysis (G.A. for abbreviation), PartI, p. 4, and Part 11,
p. 84.

2 Theorem (46.4), part (1) in G.A,, II, p. 137.
3 Spaces associated with non-modular matrices with applications to reciprocals, Chi-
cago thesis, 1931, pp. 3-9. The same proof is given in G.A., II, p. 193.
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for all 8 such that MB=1. If the class ® is identified as the class of
vectors B such that MB<1, and F;, on M, to N, is defined to be
(| JBuo| | o) for every I=8, then by Theorem (53.55) in G.A.* the
upper bound of MoJelB, for all B finite as to € such that MB <1, is
finite. By Theorem (46.85) in G.A., € is modular as to €, €. Since €,
is hermitian, €, is also modular?® as to € €.

When condition (2) is true, then condition (3) is secured by a sim-
ple application® of the composition of modularity? to €;=Jo€o€o. That
the last condition implies the first is proved in Theorem (46.4) of
Moore’s G.A.

From eo=J€o€o and part (2) of Theorem (46.9) in G.A., we have
N.je€o= M Jo€o€o = M€o. This completes the proof.

The hypothesis of the preceding theorem is assumed for the fol-
lowing corollary:

COROLLARY. Let Mox consist of all uo whose moduli as to €, are
bounded by a fixed constant. If Mo is a subset of I, then the moduli
as to € of all vectors in Mox are also bounded.

We may assume, without losing generality, that the moduli of all
vectors in Mo+ are at most unity. Since the spaces M, and M are
linear, the condition that every uo for which Mouo=1 is modular as
to € is equivalent to condition (1) in the preceding theorem. Conse-
quently €, is modular as to € €. The equation o= Jo€ouo gives, by
Theorem (46.7) in G.A., that Mu,=< M..,eo0 whenever Mouo=1.

THEOREM 1. Consider the basis A, P, B2, €', €; and let €, € be
two positive hermitian matrices. Then the following assertions are equiva-
lent:

(1) every matrix k2 modular as to € € is of type M IM?;

(2) € is modular as to € €, and € is modular as to € €;

(3) every matrix k2 modular as to € € is modular as to € €.

For the demonstration of the theorem, we shall show that
(1)—>(2)—(3)—(1). The second implication is proved in part (2) of
Theorem (46.4) in G.A. The last implication follows from the fact
that every matrix «!2 modular as to €' €2 is of type MIN2. To show

¢ See also Hildebrandt, On uniform limitedness of sets of fumctional operations,
this Bulletin, vol. 29 (1923), pp. 309-315; Fréchet, Sur les fonctionelles bilinéaires,
Transactions of this Society, vol. 16 (1915), pp. 217-218.

5 By a similar reasoning, we may, of course, deduce the Hellinger-Toeplitz theo-
rem as a consequence of Theorem (53.55).

¢ See the author’s thesis, loc. cit., p. 8, or Moore, G.A., II, p. 193.

7 Moore, G.A., 11, p. 144.
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the first implication, consider any g, u35<0% which are modular as to
€, € respectively, Theorem (47.2) in G.A. shows that a3 is modular
as to €! €%, and hence by hypothesis, uyiz is of type I¥N2 Since
w2502, let a =u2(p?) £0. Then uj-a, and hence ), is modular as to €.
This proves that every uj modular as to € is modular as to €. By
Theorem I, ¢ is modular as to € €. Similarly, we prove that € is
modular as to €2 €2 The proof was suggested by Dr. Coral.

THEOREM III. (Generalized Hellinger-Toeplitz theorem.) Consider
the basis A, P, 9132,i1, e2. A matrix k'% is modular as to € € if and only
if k1% is by rows of M2 and J*k'?u? is modular as to €' for every us.

To prove the theorem, we make use of the fact that «!2 is modular
as to e! e?if and only if the following condition holds:

(M) &2 4s by rows of M2, and J2k*2k*21 45 modular as to €' €.

This is Theorem (46.9) in G.A., with the omission of the redundant
condition that k!2 is by columns accordant as to e!. (For when «!2 sat-
isfies the conditions (M), k!? is by columns 4'. To prove this, we note
that J2k'2¢*?! is A1 by Theorem (46.65) in G.A. Consequently, when
Slelat=0!, then J2(Slalk!?, Slx*?la!) =SLSlalJ2k!2k*2lgql =0, which
implies that Sialk'?=0? since J? is proper. Thus «'? is by columns
A1) Consequently, it suffices to prove the following statement: When
K245 by rows of IMM?, the matrix J2k 2k*2 is modular as to €' € if and only
if J2k2'u? is modular as to €' for every ul.

Using the notation introduced by E. H. Moore in his study of gen-
eralized Fourier theory, we denote the positive hermitian matrix
J2Mk*2! by €w. It was shown by Moore that the space of vectors
modular as to e is equal® to the space of vectors J2k'2u? for all u?
in 92 When «!2 is assumed to be by rows of 2, the assertion that
J2k'?u? is modular as to €! for every u? is equivalent to the assertion
that every vector modular as to €+ is modular as to €'. By TheoremI,
the latter assertion is valid if and only if € is modular as to €! €.
This proves the theorem.

The basis stated in the preceding theorem is assumed for the fol-
lowing corollary:

COROLLARY. Suppose that k12 is by rows of 2. Then «'2 is modular
as to €' € if and only if every vector modular as to J*k*2k**' is modular
as to €.

The transitivity for accordance and finiteness is stated in the fol-
lowing theorem:

8 Moore, G. A,, I, p. 22,
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TuEOREM IV. Consider the basis A, B, € and let € be a positive
hermitian matrix. Then

(a) every vector accordant as to €, is accordant as to € if and only if €
1s accordant as to € €;

(b) every vector finite as to €y is finite as to € if and only if € is of
type FF.

In part (a), if every vector accordant as to ¢ is accordant as to e,
then €, being of type A4,4,, is of type AA4. By Theorem (46.5) in
G.A., ¢ is accordant as to € e. Conversely every vector £ accordant
as to €, satisfies the relation &= Joeé =L,Jo€f,. Now Jo€ok,, being a
finite (right) linear combination of the columns of €, is a vector ac-
cordant as to € for every ¢. By Theorem (48.2) in G.A., £ is accordant
as to e. Part (b) is an immediate consequence of the definition of
finiteness.
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