ON THE COMPLETENESS OF A CERTAIN METRIC SPACE WITH AN APPLICATION TO BLASCHKE'S SELECTION THEOREM¹

G. BALEY PRICE

- 1. Introduction. The purpose of this note is to prove that the metric space whose elements are the closed, bounded, non-null subsets of a complete metric space, and whose metric is the Hausdorff distance, is complete; and, using this result and others already known, to give a simple proof of Blaschke's selection theorem.
- 2. Preliminaries. Let K be a metric space with elements x, y, \cdots and distance function d(x, y). A sequence x_1, x_2, \cdots in K such that $\sum_{i=1}^{\infty} d(x_i, x_{i+1})$ converges has been called an absolutely convergent sequence by MacNeille² [7, p. 192]. Every absolutely convergent sequence is a Cauchy sequence, and every Cauchy sequence contains absolutely convergent subsequences.

Let K^* be a metric space whose elements X, Y, \cdots are the closed, bounded, and non-null subsets of K, and whose distance function D(X, Y) is the Hausdorff distance between the sets X and Y (see Hausdorff [5, pp. 145–146] and Kuratowski [6, pp. 89–90]).

3. The theorem. If K is complete, then K^* is also complete.

Let X_1, X_2, \cdots be any Cauchy sequence in K^* ; without loss of generality we can assume that it is absolutely convergent. We shall define a set X and show that it is the limit of the given sequence. Let x_1 be any point in X_1 , x_2 any point in X_2 such that $d(x_1, x_2) < D(X_1, X_2) + 2^{-1}$, x_3 any point in X_3 such that $d(x_2, x_3) < D(X_2, X_3) + 2^{-2}$, and so on. The existence of points x_2, x_3, \cdots with the properties stated follows from the definition of the Hausdorff distance. Every point x_i in X_i is a member of a sequence x_1, x_2, \cdots of the kind described. The sequence x_1, x_2, \cdots is absolutely convergent and hence a Cauchy sequence; since K is complete, it has a limit x_0 in K. Let X_0 be the locus of all the points x_0 obtained as the limits of all possible sequences formed in the manner stated; let X be the closure of X_0 . Then X is closed, bounded, and non-null, and X is in K^* . We shall show that $\lim_{x \to \infty} X_i = X$. Let any $\epsilon > 0$ be given. Choose $n = n(\epsilon)$ so that $\sum_{i=1}^{\infty} [D(X_i, X_{i+1}) + 2^{-i}] < \epsilon/2$. Let $x^* \in X$, and let x_0 be the limit of a

¹ Presented to the Society, December 28, 1938, under the title Spaces whose elements are sets.

² Numbers in square brackets refer to the references at the end.

sequence $x_1, x_2, \dots, x_k, \dots$ and such that $d(x^*, x_0) < \epsilon/2$. Then the distance from x^* to X_k is equal to or less than

$$d(x^*, x_0) + \sum_{k=0}^{\infty} d(x_i, x_{i+1}) < d(x^*, x_0) + \sum_{k=0}^{\infty} [D(X_i, X_{i+1}) + 2^{-i}]$$
$$< \epsilon/2 + \epsilon/2 = \epsilon$$

if $k \ge n$. Since every point x_k in X_k belongs to a sequence x_1, x_2, \dots , the distance from any point x_k to X, which does not exceed the distance from x_k to the limit x_0 of the sequence $x_1, x_2, \dots, x_k, \dots$, is equal to or less than

$$\sum_{k=0}^{\infty} d(x_i, x_{i+1}) < \sum_{k=0}^{\infty} [D(X_i, X_{i+1}) + 2^{-i}] < \epsilon/2$$

if $k \ge n$. From these facts it follows that $D(X_k, X) < \epsilon$ for $k \ge n$, and hence that $\lim X_k = X$. Thus the (absolutely convergent) Cauchy sequence X_1, X_2, \cdots in K^* has the limit X in K^* , and the proof of the theorem is complete.

4. The space K^* when K is a Banach space. The space K^* has additional properties when K is a Banach space, that is, a space which is linear, normed, and complete (see Banach [1, p. 53]). Let aX denote the set of elements ax, $x \in X$, when a is a real number; let X+Y denote the set of elements x+y, $x \in X$ and $y \in Y$; let C[X] denote the closed convex extension of X; and let $\rho(X)$ denote the diameter of X. Then K^* has, in addition to its elementary properties as a metric space, the following ones:

(4.1)
$$D(aX, aY) = |a| D(X, Y) \text{ for every real number } a;$$

(4.2)
$$D(X_1 + \cdots + X_n, Y_1 + \cdots + Y_n) \le D(X_1, Y_1) + \cdots + D(X_n, Y_n);$$

(4.3)
$$D(C[X], C[Y]) \leq D(X, Y);$$

$$(4.4) \quad D(X + Y_1, X + Y_2) \leq D(Y_1, Y_2);$$

(4.5)
$$\rho(X_i) \leq \rho(X_1 + X_2) \leq \rho(X_1) + \rho(X_2), i = 1, 2;$$

(4.6)
$$\rho(C[X]) = \rho(X), \quad D(C[X], 0) = D(X, 0).$$

The last two of these relations have been given by Birkhoff [2, pp. 368, 360]. The proofs of the others will be given elsewhere. It can be shown by means of examples that the inequality may hold in (4.4).

If the limit of a sequence X_1, X_2, \cdots of convex sets in K^* is a set X, it follows from (4.3) that X also is convex. For

280 G. B. PRICE

- $D(X_i, C[X]) = D(C[X_i], C[X]) \le D(X_i, X)$; and since $D(X_i, X) \to 0$, lim $X_i = C[X]$. But since a sequence has a unique limit, we have C[X] = X, and X is convex.
- 5. Blaschke's selection theorem. Let E be a closed and compact subset of a Banach space K, and let E^* denote the subset of K^* which consists of the closed, non-null subsets of E. Then both E and E^* are totally bounded, and E^* is closed and compact in K^* (see Hausdorff [5, pp. 107–108] and Kuratowski [6, p. 91]). Let E_c^* denote the subset of E^* which consists of convex sets. Since E^* is totally bounded, any infinite set of elements in $E^* \subset E^*$ contains a Cauchy sequence; since K^* is complete and E^* is closed, this sequence has a limit in E^* . By the result at the end of the last section, this limit element is itself a closed, convex set and therefore belongs to E_c^* . We have thus shown that E^* is closed and compact. This result is Blaschke's selection theorem extended to a Banach space (see Blaschke [3] and Bonnesen and Fenchel [4, p. 34]).

REFERENCES

- 1. S. Banach, *Théorie des Opérations Linéaires*, Monografje Matematyczne, vol. 1, Warsaw, 1932.
- 2. G. Birkhoff, Integration of functions with values in a Banach space, Transactions of this Society, vol. 38 (1935), pp. 357-378.
 - 3. W. Blaschke, Kreis und Kugel, Leipzig, Veit, 1916.
- 4. T. Bonnesen and W. Fenchel, *Theorie der konvexen Körper*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, no. 1, 1934.
 - 5. F. Hausdorff, Mengenlehre, Berlin and Leipzig, de Gruyter, 2d edition, 1927.
 - 6. C. Kuratowski, Topologie I, Monografje Matematyczne, vol. 3, Warsaw, 1933.
- 7. H. M. MacNeille, Extensions of measure, Proceedings of the National Academy of Sciences, vol. 24 (1938), pp. 188-193.

University of Kansas