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1. Introduction. The purpose of this note is to prove that the met­
ric space whose elements are the closed, bounded, non-null subsets 
of a complete metric space, and whose metric is the Hausdorff dis­
tance, is complete; and, using this result and others already known, 
to give a simple proof of Blaschke's selection theorem. 

2. Preliminaries. Let K be a metric space with elements x, y, • • • 
and distance function d(x, y). A sequence xi, x2, • • • in K such that 
^2T^(Xiy Xi+i) converges has been called an absolutely convergent se­
quence by MacNeille2 [7, p. 192]. Every absolutely convergent se­
quence is a Cauchy sequence, and every Cauchy sequence contains 
absolutely convergent subsequences. 

Let i£* be a metric space whose elements X, F, • • • are the closed, 
bounded, and non-null subsets of K, and whose distance function 
D(X, Y) is the Hausdorff distance between the sets X and Y (see 
Hausdorff [5, pp. 145-146] and Kuratowski [6, pp. 89-90]). 

3. The theorem. If K is complete, then i£* is also complete. 
Let Xi, X2, • • • be any Cauchy sequence in j£*; without loss of 

generality we can assume that it is absolutely convergent. We shall 
define a set X and show that it is the limit of the given sequence. Let 
Xi be any point in X±, x2 any point in X2 such that d(xi, x2) <D(Xx, X2) 
+ 2~1

1 xz any point in Xz such that d(x2l x$) <D(X2, Xz)+2~2, and 
so on. The existence of points x2, #3, • • • with the properties stated 
follows from the definition of the Hausdorff distance. Every point Xi 
in Xi is a member of a sequence xi, x2, • • • of the kind described. 
The sequence xi, x2, • • • is absolutely convergent and hence a Cauchy 
sequence; since K is complete, it has a limit xQ in K. Let XQ be the 
locus of all the points xQ obtained as the limits of all possible se­
quences formed in the manner stated; let X be the closure of X0. 
Then X is closed, bounded, and non-null, and X is in if*. We shall 
show that lim Xk = X. Let any e > 0 be given. Choose n = n(e) so that 
2 » [D{Xiy Xi+x) +2-*] < e/2. Let ** t X, and let x0 be the limit of a 

1 Presented to the Society, December 28, 1938, under the title Spaces whose 
elements are sets. 

2 Numbers in square brackets refer to the references at the end. 
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sequence xit #2, • • • , Xk, • • • and such that d(x*, x0) < e/2. Then the 
distance from x* to Xk is equal to or less than 

» 00 

<*(**, *o) + £ d(*t, **n) < <*(**, *o) + Z [D(Xi, Xi+1) + 2-*] 
k k 

< e/2 + €/2 = e 

if k^n. Since every point Xk in Xk belongs to a sequence xu #2, • • • , 
the distance from any point x& to X, which does not exceed the dis­
tance from Xk to the limit Xo of the sequence Xi, #2, • • • , Xk, • • • , is 
equal to or less than 

2 <*(*,, *i-+i) < £ [*>(**, -X"i+i) + 2-'] < e/2 
A k 

if fe^w. From these facts it follows that D(Xk, X)<e for k^n> and 
hence that lim Xk = X. Thus the (absolutely convergent) Cauchy se­
quence Xi, X2y • • • in ÜT* has the limit X in K*, and the proof of the 
theorem is complete. 

4. The space K* when K is a Banach space. The space K* has 
additional properties when K is a Banach space, that is, a space which 
is linear, normed, and complete (see Banach [l, p. 53]). Let aX de­
note the set of elements ax, x zX, when a is a real number; let X+ Y 
denote the set of elements x+y, x z X and y z Y\ let C[X] denote the 
closed convex extension of X; and let p(X) denote the diameter of X. 
Then ÜT* has, in addition to its elementary properties as a metric 
space, the following ones: 

(4.1) D(aX, aY) = | a \ D(X, Y) for every real number a; 

D(XX + • • • + Xn, Y1 + • • • + Yn) 

£D(Xl9Yi) + '•> +D(Xny Yn); 

(4.3) D(C[XlC[Y]) £D(X,Y); 

(4.4) D(X + Fi, X + F2) ^ D(YX, F2); 

(4.5) p(Xi) £ p(Xi + *«) ^ p(Xx) + p(X2), i = 1, 2; 

(4.6) p(C[X]) = p(X), £>(C[X], 0) = D(X, 0). 

The last two of these relations have been given by Birkhoff [2, pp. 
368, 360]. The proofs of the others will be given elsewhere. I t can be 
shown by means of examples that the inequality may hold in (4.4). 

If the limit of a sequence Xi, X2, • • • of convex sets in i£* 
is a set X, it follows from (4.3) that X also is convex. For 
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D(Xi, C[X]) =D(C[Xil C[X]) £D(Xit X); and since D(XU X)->0, 
lim Xi = C[X]. But since a sequence has a unique limit, we have 
C[X]=Xf and X is convex. 

5. Blaschke's selection theorem. Let £ be a closed and compact 
subset of a Banach space K, and let E* denote the subset of K* which 
consists of the closed, non-null subsets of E. Then both E and £ * are 
totally bounded, and E* is closed and compact in 2£* (see Hausdorff 
[5, pp. 107-108] and Kuratowski [6, p. 91]). Let E* denote the sub­
set of E* which consists of convex sets. Since E* is totally bounded, 
any infinite set of elements in E* c E * contains a Cauchy sequence; 
since K* is complete and E* is closed, this sequence has a limit in E*. 
By the result at the end of the last section, this limit element is itself 
a closed, convex set and therefore belongs to E*. We have thus shown 
that E* is closed and compact. This result is Blaschke's selection 
theorem extended to a Banach space (see Blaschke [3 ] and Bonnesen 
and Fenchel [4, p. 34]). 
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