
ON INCIDENCE GEOMETRY 

SAUL GORN 

The purpose of this note is to analyze the conditions needed in 
geometry to introduce ideal points without using order relations. 
Since only incidence relations are used, it is convenient to use the 
notation of lattice theory. The actual introduction of the ideal ele­
ments is a purely algebraic process belonging to the theory of ideal 
extension and will be given elsewhere. (See abstracts 44-5-201, 45-1-
16, 45-1-17.) Beside conditions already familiar in lattice theory we 
need conditions for the existence of products (see definition of cr-lat-
tice) and the obviously necessary condition for projectivization, Con­
dition E. The conditions for the existence of products are needed 
because incidence geometry is not taken to be a lattice ; in obtaining 
the projective extension it would be inconvenient to have to redefine 
the product of, say, two parallel lines; such a product, therefore, is 
left undefined. Condition E is not proved independent since our pur­
pose is merely the elimination of considerations of order. Condition E 
has more force the greater the dimension of the space in which it 
operates. For dimension greater than 3 the development is conse­
quently straightforward, so that we consider this case first. For di­
mension 3, however, Condition E appears to be a little too weak and 
we have a degenerate case requiring the use of the various forms of 
Desargues' theorem; the proof of these (D and D') requires an axiom 
on the existence of transversals, Axiom T. The three-dimensional case 
is put last, but in it the connection with the classical theory (see 
Pasch-Dehn, Whitehead, and Baker) is most apparent. 

1. Geometric partial orderings. For the case of any dimension 
greater than 2, we begin with "linear element" and S as undefined; 
the linear elements will later be classified according to their dimen­
sions; also taken as undefined are the operations of joining: a-\-b, and 
intersecting: ab. For projective geometry these may be defined in 
terms of ^ , but in general incidence geometry we wish to permit cer­
tain products ab to remain undefined for convenience in deriving ex­
tensions, hence axioms are added. " ^ " is to be read as "on." 

The following are the axioms for PARTIAL ORDERING: 

1. a^a for every a. 
2. a^b and b^c imply a^c. 

DEFINITIONS. a = b if a^b and b^a;a<bif 
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3. If A is a set of elements and ^2(A) exists, then a^^(A) for 
all a zAy and, if a^x for all a zA, then^2(A) ^x. 

3' . If A is a set of elements and ÜC<4) exists, then a^ JJ[(A) for all 
a e A, and, if a ^ # for all a e A, then H(^4 ) = x-

4. a ^ ô implies existence of a + ô (hence =ô) . 
4'. a ^ ô implies existence of ab (hence = 6). 
5. There is a 0 ^ every a. 
5'. There is a 1 ^ every a. 

MODULARITY. If c^a and be, a+bc, a+b, c(a+b) exist, then 
c(a+b)=*a+bc. 

This axiom leads to the classification of elements according to di­
mension. 

ARCHIMEDEAN. Every "chain" ai>a2> • • • or a\<a2< • • • is finite. 

DEFINITION, a is "prime" over bif a>b and no x exists with a>x>b. 
An element prime over 0 (under 1) is called a point (hyperplane). The 
Archimedean axiom assures the existence of both. The letter p(h) is used 
to represent a point (hyperplane). The letter I is reserved for elements 
prime over a point (namely, lines). 

By a cr-lattice we mean an Archimedean, modular, partially-or­
dered set in which 

1. if p is not on a, then pa exists (hence =0) , 
2. if pSa, b, then ab exists, 
3. a + b always exists. 
The essence of this definition is that the elements above a point 

form a modular lattice (that is, a + b and ab always exist). Together 
with the complementation and irreducibility axioms given below, it 
implies that the elements above a point form a projective geometry. 

In a cr-lattice one defines a "principal" chain as an ascending chain 
in which each element is prime over the preceding, the number of 
elements being called its length. It is then easy to show that the 
lengths of any two principal chains between a and b, where a<b, are 
equal. We then define dim a as the length of a principal chain be­
tween 0 and a minus 1, so that dim 0 = — 1 , dim p — 0, and so on. 
Furthermore, a<b implies dim # < d i m b, and, if ab exists, dim a 
+ d i m ô = dim ab+dim (a + b). To prove that x=y by "counting 
dimensions" we show that xSy and dim # = dim y, usually by means 
of the above dimensional identity. 

The following conditions are equivalent in any cr-lattice, so that 
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any one may be used as an axiom, the property involved being called 
"complementation. " 

1. If x^by there is a y with x-\-y = b, and dim ô = l + d i m # + d i m yt 

2. If a<b, then b = a+pi + • • • +pr, where pi is not on a+pi + • • • 
+pi-i+pi+i+ - • • +pn and dim ô = l + d i m a + d i m (pi + • • • +pr)-

3. If 0 < 6 , then b = pi+ • • • +pr, where pi is not on pi + • • -+pi-i 
+pi+i+ - - - + pr­

ei. If 0 < a , then a is a sum of points. 
5. If a<b, then there is a p<b with p not on a (alternatively, if 

p < b implies p <a, then b ^ a). 
6. If a^x^b, then there is a 3/ with a^ySb, x+y = b, and 

dim a + d i m J = dim # + d i m y. 
The condition of complementation gives the theory of linear de­

pendence. 
If L is a complemented cr-lattice, then a + b^a, b implies that 

1 + m a x {dim a, dim b} ^ d i m (a + b) g l + d i m a + d i m b. 
With this in mind, we define, for the general cr-lattice: x and y are 

skew if dim (x+y) = 1 + d i m x+dimy; x and y are fully transversal if 
dim (x+y) — 1 + m a x {dim x} dim 3/} ; the class {ah a2, • • • } is called 
equi-transversal, written E[di, a2, • • • ] if any two are fully trans­
versal and have the same dimension (dim (#i+a,) = 1+d im a,). This 
generalizes the relation of "coplanarity in pairs" used in §3. An equi-
transversal class is called "maximal" if it contains an element on any 
given point. The ideal point in descriptive geometry was a maximal 
equi-transversal class; although planes, and so on, are added in the 
algebraic method, the maximal equi-transversal class is still the 
"backbone" of the ideal element. 

In any cr-lattice, if dim #1 = dim a2 and p is not on #i +# 2 , then E [a, a,\ ], 
E[a, a2], p^a if and only if a = ( £ + a i ) ( £ + a 2 ) ; and if £ 3 < a 3 < a i + a 2 , 
dim a3 = dim a%, then E [a, a3] if and only if a3 = (£3+â0(#i+#2) . It 
consequently follows that if E[ah cz2] and # i + a 2 < l , there cannot be 
more than one maximal equi-transversal class containing them, any 
two of its elements will determine it, and if ai#2 exists, the elements 
are given by p+axa2 for all p not on &ia2. 

To prove the existence of such maximal equi-transversal classes is 
a harder problem which will be considered in §2. 

Consider now an Archimedean lattice for which 
1. if p is not on cz, then p+a is prime over a; 
2. if a>ah>0, then a is prime over ah; 
3. if it is not true that a^&, then there is SL p Sa with p not on b. 
It is not difficult to show that such a lattice is complemented, so 
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that Menger's axioms hold. We therefore call it a Menger lattice. It 
is also not very difficult to show that the modularity condition holds 
in the two cases (1) be > 0, (2) either b ^ c or b > c. From this it follows 
that a complemented c-lattice becomes a Menger lattice when the un­
defined products are defined to be 0, and, conversely, a Menger lattice 
in which those products are undefined for which dim a + d i m b 
>dim (a + ô )+d im ab becomes a complemented (7-lattice. 

A complemented cr-lattice is called irreducible if any line (dim = 1) 
contains at least three distinct points. The reason for this terminol­
ogy, at least in the projective case, may be found in Menger, Birk-
hoff, and von Neumann. The primary use of this condition is in the 
proof that the projective extension is "minimal." 

2. Incidence geometry. By an incidence geometry we mean an ir­
reducible (r-lattice of dimension not less than 3 fulfilling the following 
condition : 

CONDITION E. If E [h, l2l h], E [h, l2, h], and h+l2>lj, then E [h, h\ 

For dimension 3, the further condition T is required. See §3. 
In an incidence geometry it is possible to prove the existence of a 

maximal equi-transversal class containing a± and a2 if E[ah a2] and 
# i + # 2 < l ; we have seen that the uniqueness holds in any cr-lattice. 
This result follows readily from three lemmas, the first two of which 
generalize Conditions E and E ' of §3. 

LEMMA BX. If E[ai, a2, a3] , E[ai, a2l a4], and if it is not true that 
aj^ai+a2l then E[a%, a4] . 

For, taking pi <aiy pi not onITa*, a\ = ^ J - i / i ; where p± < hj, r = dim ai} 

we get ai ==Yjrj=\lij where Uj = a,i(pi+hj), and E [hi9 l2i, lzi\ E [lu, l2i, hj] 
(by a dimensional count), so that Condition E gives E[k3; kj], and 
we then have a3+aA=Ylhj+J2^3 =J2Qv+hj) =YlQsi+P*) =^hi+p4t 

LEMMA B2. If E\X, Xi, Xj], i,j=l, 2, 3, Xi+Xj = Xj+Xk, andx^Xi+Xj 
does not hold, and if p' is not on x, Xi+Xj, or x' =H(^<+& /)» then 
J-J [Xy X , Xi J. 

For p' is on at most one x+Xi\ hence we consider the following 
cases : 

CASE 1. If p'^x+xk, let xi = (xi+pf)(x+p/); then E[x, Xi, x( ] 
and x' = (x+p,)(x+Xk)] thus E[x', x, Xk, Xi], so that Bi with 
E[x, Xi, x{ ], E [x, Xi, Xj] gives E [xi, x3-, x{ ] ; similarly E[xi, Xj, xj ] so 
that xi s=(xi+p/)(xj+p/)=x/, therefore, x/ =x'=x/, and so on. 
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CASE 2. If pf is not on x+Xi, i = l, 2, 3, let x[ = (x+p')(xi+p') so 
that E [x, Xi, xj ], and therefore Bi and E [x, Xi, Xj] give E [xi, #,-, #»-, x]; 
therefore x/ = (xi+p')(xj-\-p')=x/, therefore x/ = x ' = # / . 

LEMMA B3. If E[X\, #2, #3, #4], #i+#2>#t , #3+#4>#j, and p is not on 
#i+#2, X3+X4, then pSx has E[xi, X2, x] if and only if E[xs, x*, x]. 

For E[xi, X2, Xi] and Bi give E[x, Xi\. 

THEOREM B. If E\x\, #2] and # i+X2<l , then there is a {hence ex­
actly one) maximal equi-transversal class containing X\ and x2i and 
(1) if x, x', x" are in it, # ' + # " > # , then we have dim (x+x'-\-xn) 
= 2 + d i m x; (2) it is determined by any two of its elements; and (3) if xx' 
exists, then any element is on xx\ for example, x" =p"+xx'. 

It is only necessary to show that the constructions in §1 : 
x = (p+Xi)(p+X2)j and x$:=(p3+x)(xi+X2) have x$ independent of x 
and x independent of xi, X2. This is the substance of Lemmas B2 and 
B3. 

THEOREM. If h^>x, dim x < d i m h> then there is one and only one 
maximal equi-transversal class containing x with elements on h. 

For if p'<h, x' = (x+p')h, p"<h, p" not on x', x" = (x+p")h, 
then E[xt x\ xf,\ (by x'-\-x"tk(x-\-p' +pn)h and a dimensional 
count), so that the class determined by x' and x" is the one sought. 

DEFINITION. If pu P2 are not on h and x\ ^ pi with dim x\ <d im h, then 
TPlP2(xi) =X2 is the element on p2 of the maximal E.T. class of x\ and h. 

THEOREM I \ 1. If x\h exists and X\h>Q, then the same holds f or x%h 
and X\X2y and X\h = x%h = X\X2> X2 = p2+Xih. 

2. If Xi ̂  yit then X2 S y 2-
3. T^PiPtiPi) =p2> and> ifxi'^pi+p21 x% = x\. 

The proof follows readily from #2 = [p2+(x\+p)h] [p2+(xi+p')h], 
^2= [p2+(yi+p)h][p2 + (yi+pf)h] where p, p'<h with dim (yi+p 
+p')=2+dimyi. 

LEMMA. If E[xi, yh Zi] and Zi^xx+yi, then E[x2, 3̂ 2, z2] and 
Z2SX2 + y2. 

By T this needs proof only if x±+yi is a hyperplane. We must show 
that p2 ^22 implies pi ^#2+^2; that is, I2 — P2+P2 ^£2 implies 
^2^x2+^2; take pi ^#i+3>i and not on h; then the lines h, (h+pi)xi, 
(h-\rpi )y\ correspond to h <z% and lines on #2, 3̂ 2; if we can show that 
these coplane, then /2^#2+3>2î hence the lemma requires proofs for 
lines only, and therefore follows from T if dim 1 > 3 . If dim 1 = 3 , 
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Baker's proof applies (using results of §1, this is the only point in 
our development in which Desargues ' theorem is needed). 

THEOREM. TPlP2 may be extended to hyperplanes in one and only one 
way if the conditions of Y are to hold. 

We merely take hi = xi+yi, E[xi, yi\, and define h2 — x2+y2; the 
lemma then applies. 

Theorem F of §3 is an obvious consequence of the lemma, using 
TpiP2; it generalizes to the following theorem. 

THEOREM. If h=^2[la=^r
1li2 with E[ln, li2], r = dim 1, and if 

p', p" are not on h, 1/ >p', If >p" belonging to the maximal E.T. class 

of lih li2, ^ n E É î Z / , 0 / ' ] . 
For Th

p>v" takes // into 11', and hence ^ / / into XX' ' • 

Thus far, maximal E.T. classes are significant only if the elements 
are smaller than hyperplanes. Any class of hyperplanes is E.T. We 
can now distinguish the important ones. 

DEFINITION. A class of hyperplanes is called "regular" if there is one 
and only one on any p, and if, for every h, hi, h2 in it and pi<h{, we have 
hï = TllV2(hi). 

THEOREM. If h^hi, there is one and only one R. class on them. 

The uniqueness is obvious. To prove existence, we must show that 
any h', h" in the R. class determine it in the same way; that is, if 
h = Th

PlPXhi), h' = Th
Plp,(h), h" = Tn

PlP„(hi), then ft, = r^ P l ( f t " ) . We 
use the following lemmas to give h2 = Yn

pfpJtf, hff = T^p^h/ (from 
hi = Th

p>Plh'), hence h2 = Th
PPlh, h" = Yn

pp>>h, therefore h = Th
p„Ph", 

and, finally, h2 = Th
p„Pih". 

LEMMA 1. If x2 = r^ 2 (xi ) and xz = Th
Pm(x2), then xz=Th

vm(xi). 

For Xi and h give x2, x2 and h give x$, hence Xi and h give x3; if 
Xi = hi, split them up as usual. 

LEMMA 2. If p<h, pi<hu and h = TP\p(h2), then h = Th
P\p(hi). 

For taking, as usual, & i = X ^ i w r t n pi<ln, r = dim hi, and 
li2 = h2(p2+ln), we get h^J^ln a n d hi = hi(pi+li2); thus, on p, hi 
and h2 give U\ therefore In and U2 give k, hence In and h2 give k; but 
y%2r

ili = h, which was to be proved. 
The maximal E.T. classes and the R. classes give all the ideal ele­

ments except the ideal hyperplanes. 
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3. Three dimensions. This section will be devoted not only to fill­
ing in the gap mentioned above, but also to showing the relationship 
between our development and the classical work. In particular, in 
order to show that incidence geometry includes descriptive, projec­
tive, and affine geometry, we will start with the better known inci­
dence axioms of geometry and show their relationship to our axioms. 

We begin with the undefined terms "point," "line," and "plane" 
and the undefined relation "on," using the symbols p, I, T and > or < 
(depending upon the dimensionality). As axioms we take what are 
essentially the Hubert incidence axioms: 

(1) If £<ZandZ<7T, then£<7r . 
(2) If pi9£p21 they are on one and only one line, called pi+p2. 
(3) There is a p. 
(4) For any pi, there is a p2 7épi. 
(5) For any /, there is a p not on /. 
(6) If pz is not on P1+P2, and pi9£p21 the three points are on one 

and only one plane, called pi+p2-\-ps-
From this the meaning of p+l is clear. 
(7) If p <7Ti and p<T2 and TT\ 9éT2, then there is an / >p, with I <7Ti, 

/<7T2; this I is called 71*1X2. 
(8) Any line contains at least three distinct points. 
(9) For any 7r, there is a p not on T. 
The three space is defined similarly to p+l, and its uniqueness 

follows from Axiom (7); it will be designated by 1. We also use the 
null element 0. In general we define a + b by using the maximum 
number of "independent" points which may be chosen from a and b. 
The product ab is not always defined, but we do take ab = a if a^b; 
7Ti7T2 is defined in case the conditions of Axiom (7) hold; lw = p if 7r>/, 
p < / , p <7T; hh = piî h^k, P <k pa = 0iîa>p; and hh == 0 if h+h = 1, 
that is, if U are "skew." It is easy to see that if h and h are skew and 
p<h, then (p+h)h = p. 

The partial ordering axioms, Axioms 1-5', are equivalent to Axiom 
1 and the various definitions above. Modularity is easily verified by 
enumerating the six possibilities after the trivial cases (further S 
relations occurring) are eliminated, use being made of Axioms 2 and 6. 
The Archimedean axiom is obvious from the finite dimensionality. 
The axioms for a (7-lattice then follow from Axiom 7 above and the 
definitions following. The complementation condition follows from 
Axioms 2, 4, 5, 6, 9. 

Beside the above axioms we also use the following one. 
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AXIOM T.Ifp<h, • • • , ln and I is skew to each of the h, then there is a 
w>l, 7T>£ which is transversal to the h, that is, irh—pi. 

This axiom is obvious in projective geometry and follows readily 
in descriptive geometry. 

DEFINITION. The set of lines {h, k, • • • } is called equi-transversal 
if every two of them coplane. We write E [lu h, • • • ]. If there are more 
than two lines, we exclude the case where all lie in the same plane. 

In the development of ideal elements from descriptive geometry 
(see Pasch, Whitehead, and Baker), the following incidence theorems 
are proved. 

THEOREM D. (Desargues' theorem on a point.) If p<h, l{, 
= (i = l, 2, 3), and h^{h+h){U+lj)=hu lij'= (h+h')(h+hf) = lji, 
then I a coplane if and only if I12 = l2Z = /31. 

THEOREM D ' . (Desargues' theorem in a plane.) If pi+p2+pz 
= pi +P2 +ps is a plane, and / / ' =pi+pi , hj = pi+Pi = hu hi -pi 
+p! =1]/, lijlif =Pu, Wil' =Pij> then pa colline if and only if 

THEOREM E. If E[h, h, h], E[h, h, h], and li+h>li, then E[h, h]. 

THEOREM E ' . If ^\h is a plane, pi, p& are not on ^\U, and 
n ? ( ^ + ^ ) =/4, thenJlKk+p,) =h andE[h, hi 

THEOREM F. If h, Ij <w, (i = 1, 2, 3), and p1, p2 are not on w, then 
U = (h+Pl) (I! +Pl) coplane if and only if h2 = (h+p2) (// +p2) do. 

In this section we will establish those relationships among these 
theorems needed to show that all are consequences either of E or of 
E' , and will finally be led to the use of E (which is obviously a neces­
sary condition for projectivization) as an axiom permitting the intro­
duction of ideal elements. It is not our purpose here to consider 
whether it is independent of Axioms (l)-(9) and T. In projective 
geometry D and D ' are known to be true, E and E ' are obvious since 
all the lines concur, and F is obvious since the triangles h and / / are 
perspective from some line. Also E ' and F are the hypothesis and con­
clusion of a Desargues' theorem in the plane when the points pi3- and 
pij do not exist. 

1. That D implies D ' is obvious upon projecting the configuration 
of D ' through a point not in the plane. 

2. T and D ' imply D—obvious. 
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3. E ' implies E; for Axiom (8) may be used to find p<h+h with 
p not on h, h, and Axiom (7) gives (p+h)(h+h) = 1; taking pi<h, we 
have (pz+l)(pz+h)(pz+h)=h, hence, by E' , (pA+l)(pi+h)(p*+h) 
= h, and E[h, h], 

4. E implies E ' is a special case of Lemma B2, §2. 
5. E implies D ' ; the proof parallels the classical construction with 

variations when certain intersections do not exist. Let / = £23+£31. 
We must show that pi2<l if and only if pn <W. Take pi not on X^>», 
hi"=pi"+p3i, pi'<hi' with pi'^pi', psi (Axiom (8)). Thus 
pzi = lhihihi'. Let h^pi+pi', U =pi+p!' for * = 1, 3, and take 
W ' = £3" +£23 î thus £28 = feW fa''. Now take /2 = (h+p*) (h+P*) >P2, 
so that E[h, h, h] (for hKpl'+hi); take Zu" = (h+h)(hi' +hi') 
>Pi", h' = {pi+hi'){pi+hi')>pi, so that E[h', hi', hi']; and 
finally take / ' = (pn+h)(Pu+h) >Pn, so that E [/', /lf / , ] . 

Since h<h+p2 =zh+p2z, hi' —pi' Jrp2z<h+p2z, the definition of 
hi' gives E[h, Z u" , / » " ] ; since // <p(' +hi, I'<p*l+U = p*l+Pi 
+Pi" =Pn+Pi' +pl' =Pzl+h', V < # + V ' = £3' +hi' >Pi +Pi' 
= h, we have E[l', h', 4' ] and E[h', 4' ]. Consequently, applying E 
to £ [ / ' , /x, / 3 ] , £[ / 2 , /1, /.] and E[h', hi', hi' ], E[h, hi', hi' ], we get 
E[l'th,h9h] and E[h,h']. 

Now pn<h" if and only if E[l', h' ] ; for since £[/2 , V ], pn<h" 
gives h' <h+pi = h+h" =h+Pn = h+l', and, conversely, iîl2">Pn 

and E [/', h' ], then /2+/2 ' > / ' , so that £ [ / ' , /2', /2] ; with £ [Z23'', h', h) 
and Theorem E, this gives E[l', hi'], so that we would have 
p2z<l'+p2z = l/+hi' =l'+pi' =l'+U =l'+Pi =l'+h", and there­
fore p2z<h", hz = h" =hi, contradicting hzhi =£23. Thus we need 
only show that E [/', h' ] if and only if pn<l. 

A. If E [h, h' ], then E [/', h', h' ] and E [/', h', U ] and Theorem E 
give E [h', h' ,h'h now if / / +h' >hi ', we would have E [hi ' , h', # ] 
and therefore pi' =tihi' <h', hence pi' =h'h' <h' *=pi +pi', and 
therefore pi < pi '+pi' = /31' ' and hi ' = £31+^3' = hi, so that 
pi' <hi <^2pi, a contradiction; hence hi' <h' +h', so that 

P12 = W12' = [ ( E #<)(*i + W ] [ ( Z #<)(« + « ) 1 

= (Z^ f t + yw +«) 
< (h + hW +«) = W 
< « ' + W ; #12 < ( Z #<)(W + hi') = /. 

B. If £1 2</, then Pi2 = lh2=[(T,Pi)(hi'+hi')][(Zpi)(h+h)] 
= Œ,Pi)(hi'+hi')(h+h)<hi';hencehi'+h' =hi'+pi =hi'+hi, 
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so that JE[ / I ' , h'], therefore E[h', U, l{\ and Theorem E gives 
E [l\ l{ ], which was to be proved. 

6. D, E, and E ' imply F. The proof is the same as that in descrip­
tive geometry, where use is made of the perspectivity of the elements 
on p1 and p2 with respect to 7r. It has already been indicated in §2. 

In the development, E and E ' are used as criteria for the identity 
of ideal points and F is used to determine the coUinearity of ideal 
points, whereas in descriptive geometry D and D ' are used to prove 
E ' ; if E is accepted they are needed only to prove F, and even so only 
in three dimensions. E ' may be used to define E[h, h, • • • ] in the 
case where the /,- coplane. 
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