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In this note the following Theorem A concerning continuous func­
tions in a very general abstract space is established, and from this 
theorem are deduced certain results concerning semi-metric spaces. 
In particular, Theorems 2.2 and 2.3 below generalize a theorem 
proved by Montgomery2 concerning the behavior of the distances 
between points of a metric space under transformations of the space 
into itself. 

The space S to be considered is a collection of "points" such that 
to each nonvacuous subset M of 5 there is defined a unique non-
vacuous enclosure set M such that if M0 and Mi are nonvacuous 
subsets then (Mo+M-d = I f 0 + î f i . We shall not even require that M 
be a subset of M, although unquestionably this latter condition is 
desirable for a far-reaching topological study of abstract spaces in 
general. Two sets M and N are mutually separated if NM+NM = 0. 
A point set X is said to be connected if it is not the sum of two non­
vacuous mutually separated point sets. Let <j>(p) be a single-real-
valued function defined on S. If I f is a nonvacuous subset of S, we 
shall denote by </>(M) the set of real numbers <j>(p) determined as p 
ranges over M. Using the usual absolute value as the metric in the 
space of real numbers, and defining the enclosure of a set of real 
numbers as the set, together with all its limit points, the function <j>(p) 
will be said to be continuous on S if, for every subset M of 5 ,0(M) is 
contained in <£(M). 

THEOREM A. Suppose S is a space of the above described sort which 
is connected, andf(p, q) is a single-real-valued f unction defined for each 
pair (p, q) of S and such that: (i) f(p, p)=0; (ii) f(p, q)=f(q, p)\ 
(iii) f(p, q) is continuous in its arguments separately on S. Then either 
f(p, q) is of constant sign (that is, for all (p, q) either f(p, q)^0 or 
f(P> O) =0) , or there exists a pair of points p9*q such that f (p, q) =0 . 

1. Proof of Theorem A. The conclusion of this theorem will be es­
tablished by indirect argument. For suppose that this conclusion is 
not true. Then f(p, q) ̂ 0 for p?*q, and there exist points pu qu pi* & 

1 Presented to the Society, September 8, 1939. 
2 D. Montgomery, A metrical property of point-set transformations, this Bulletin, 

vol. 40 (1934), pp. 620-624. 
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such that f (pu qi)>0,f(p2, 32) <0 . It will now be proved that this con­
dition is in contradiction to the hypotheses of the theorem, 

We shall first show that this latter condition implies that there 
exist points x, yu y^ such that ƒ(x, yi) >0 , f(x> y2) <0 . If <?2 = <Zi, we 
may take x = qu yi = Pu y2 = p2\ if Q2 = pi we may take x = pi, yi = qu 
y2 = p2> There remains the case q2?£qi and q27£pi\ in this case if 
f (Pu S,2)>0, take x = q2i yi = pu y2 = p2, whereas, if ƒ (pi, £2)<0, take 
x = pi, yi = qu y2 = q2. It is to be remarked that this part of the proof 
does not utilize the connectedness of S. The original proof of the 
author of this result involved the use of connectedness. The above 
simple proof was suggested by L. M. Graves. 

Now for a point x let Ax denote the set of all points p such that 
ƒ(#, p) <0 , and Bx the set of all points p such that ƒ(x, p)>0. On the 
assumption that the theorem is false it has been shown that there 
exists an x such that neither Ax nor Bx is vacuous. For each such x 
we have x+Ax+Bx = S. From the continuity of ƒ(#, p) as a function 
of p it follows readily that Ax and Bx are mutually separated; more­
over, since/(x, x) = 0, ƒ(#, P)T*0 for p5*x, we have that 

x = x, (x + AX)'BX = 0, (x + Bx)-Ax = 0. 

Finally, the connectedness of S implies x ' AL X — X) x Bx = x, and that 
x+Ax and x+Bx are connected sets. 

Now consider an arbitrary point q of Ax. Then x is a point of Aq 

since/(g, x) =ƒ(#, q) <0 . Suppose BqBx 9e 0. Then q+Bq = (q+Bq) -Ax 

+ (q+Bq) Bx, and the sets (q+Bq) -Ax, (q+Bq) Bx are mutually sep­
arated since A x and Bx are mutually separated. But by the above 
argument the set q+Bq is connected. Therefore, BqBx = 0, and BX is 
a subset of Aq. Since q was an arbitrary point of A x, we have for each q 
of A x and each p of Bx that ƒ(<?, p) <0 . For £ a fixed point of Bx, it 
follows from the fact that x-Ax = x and the continuity of f(q, p) as 
a function of q that ƒ(#, £) ^ 0 . This, however, is impossible in view 
of the definition of Bx. Hence Theorem A is established. 

2. Applications of Theorem A. We shall now consider a space 5 
which is topologized by means of a real symmetric distance function 
d(P, q). That is, d(p, q) is defined for each pair of points (p, q) of 5 and : 
(a) d(p, p)=0; (b) d(p, q) =d(q, p); (c) d(p, q)^0 if p^q. If M is a 
subset of Sy the enclosure of M shall be defined as the set of all points 
p satisfying the condition that there is a corresponding sequence {pn} 
belonging to M such that l ining \d(py pn)\ =0 . The enclosure func­
tion for such a space is clearly additive, and hence such a space is of 
the kind considered above. For a space of this latter sort it is readily 
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seen that a subset M is contained in its enclosure M\ moreover, if M 
consists of a single point py then M =fi = p. Such a space is a semi-
metric space in the sense of Fréchet if in addition d(p, q)^0 for all 
points p, q. Clearly a space 5 which is topologized by means of a real 
symmetric distance function is a semi-metric space with respect to 
the new distance function |d(p, q)\. In view of the above Theorem A 
we have, however, the further result : 

THEOREM 2.1. Suppose S is topologized by means of a real symmetric 
distance f unction d(p, q). If S is connected and d(p, q) is continuous in 
its arguments separately on 5, then either d(p, q)>0 or d(p, q) <0for all 
distinct points p and q; that is, either S is a semi-metric space with re­
spect to d(p, q), or S is a semi-metric space with respect to the distance 
function —d(p, q). 

In view of this theorem, there is no loss of generality in stating the 
following result for a semi-metric space instead of for a space topolo­
gized by means of a real symmetric distance function. 

THEOREM 2.2. Suppose S is a connected semi-metric space whose dis­
tance function d(p, q) is continuous in its arguments separately. If Tis a 
continuous transformation on S to S, and there exist pairs of points 
(Ph qi)y (p2, q2) such that d(Tph Tqi) >d(ph qi), d{Tp2y Tq2) <d(p2, q2), 
then there exists a point pair (p,q), (p^q), such that d(Tpy Tq) — d{p,q). 

It is to be emphasized that we do not require that the image of S 
under T be the whole of 5 ; moreover, if Si is the image of S under Ty 

it is not supposed that there is a one-to-one correspondence between 
the points of 5 and Si. 

Hf(P> <Z) is defined as d(Tp, Tq)—d(p, g), Theorem 2.2 is an im­
mediate consequence of Theorem A. This latter theorem extends in 
several directions a result proved by Montgomery (loc. cit.). In par­
ticular, Montgomery assumed the space which he considered to be 
arc-wise connected. 

In the above cited paper, Montgomery proved as a preliminary re­
sult that if S is a conditionally compact metric space and T is any 
one-to-one transformation of S into the whole of itself which does not 
leave all distances invariant, then T must increase at least one dis­
tance and decrease at least one distance. Actually, his proof applies 
to a semi-metric space whose distance function is continuous in the 
arguments (p, q) jointly. Morover, for his proof of an auxiliary lemma 
to be valid it is not necessary to assume that 5 itself is conditionally 
compact ; it is sufficient to assume that if p is an arbitrary point of S> 
then the subset of S consisting of the points [p, Tp, T2p, • • • ] is con-
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ditionally compact. For convenience, we shall term such a transfor­
mation a conditionally compact transformation. If S itself is condi­
tionally compact, then clearly every one-to-one transformation of S 
into itself is conditionally compact; it is readily seen, however, that 
there are non-trivial examples of conditionally compact transforma­
tions of a space S into itself for which the given space S is as a whole 
not conditionally compact. Montgomery's proof of the lemma in the 
above cited paper establishes the following result: Suppose S is a 
semi-metric space whose distance f unction d(p, q) is continuous in (p> q) 
jointlyf and that T is a one-to-one conditionally compact transformation 
of S into the whole of itself. Then if T increases the distance between 
some two points of S, there also exist two points whose distance is de­
creased under T, Hence we have the following conclusion: 

LEMMA. Suppose S is a semi-metric space whose distance function 
d(p, q) is continuous in (p, q) jointly. If T is a one-to-one transformation 
of S into the whole of itself such that T and its inverse T~l are each con­
ditionally compact transformations, and T does not leave all distances 
invariant, then T must increase at least one distance and decrease at least 
one distance. 

The following result is then a consequence of this lemma and Theo­
rem 2.2. 

THEOREM 2.3. Suppose S is a connected semi-metric space whose dis­
tance f unction d(p, q) is continuous in its arguments (p, q) jointly. If T 
is a continuous one-to-one transformation of S into the whole of itself 
such that T and its inverse T~l are each conditionally compact trans­
formations, then there are two distinct points of S whose distance is in­
variant under T. 
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