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DIRICHLET'S SERIES METHODS OF SUMMATION 

H. L. GARABEDIAN 

1. Introduction. It is the object of this paper to establish several 
theorems suggested by a certain theorem due to Hardy.* Hardy's 
theorem need not be stated here since it is a special case of Theorem 1 
of this paper. 

We are concerned with the infinite series 

00 

(1.1) ]£«» = «1 + U2 + ' ' • , 
n = l 

where we define sn = Ui+u%+ • • • +un. 
We list the several different methods of summation with which 

this account is occupied. 
A. The Riesz definition.]We write C\r(œ) =^\n<(a(o)—\n)

runi (V>0), 
where {Xn} is a sequence of real increasing numbers whose limit is 
infinite and such tha tXi^O. If œ~rC\r(co)—> f/as co—><*>, the series (1.1) 
is said to be summable (X, r) to the sum U. If in the general definition 
we put r = l , co=Xn, we obtain 

( 1 . 2 ) (jKiSi + /Z2S2 + • • • + At n - l$n- l )An 

where M»-=X»+I—Xt- and Xw=/*i+/*2+ • • • +Mn-i, Xi = 0. We refer to 
means of the type (1.2) as Riesz means, as distinguished from the 
Riesz typical means of the general definition, and designate them 
henceforth by the symbol (X, 1). This is the natural generalization 
of Cesàro's first mean which suggests itself in the attachment of vary­
ing weights to the successive partial sums sv. 

B. The Dirichlet's series definitions.% A series (1.1) is said to be 
summable by the Dirichlet's series method provided that 

00 

lim ^2 une~VnS 

exists, where [vn] is a sequence of positive increasing real numbers 
whose limit is infinite, and where the Dirichlet's series converges 
when 9î(s) > 0 , s being restricted to this half plane. 

* G. H. Hardy, Proceedings of the London Mathematical Society, (2), vol. 8 
(1910), pp. 301-320, p. 311. 

t M. Riesz, Comptes Rendus, vol. 149 (1909), pp. 909-912. 
| See, for example, H. L. Garabedian, Annals of Mathematics, (2), vol. 32 (1931), 

pp. 83-106, p. 85. 
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2. Extensions of Hardy's theorem. We propose to establish the fol­
lowing theorems. 

THEOREM 1. Suppose that limw_ooswe-,'n* = 0 for all values of s for 
which 9 t (s)>0, that the series (1.1) is summahle (X, 1) to the sum U, 
and that vn is a logarithrnico-exponential* function of \n such that 
Vn = 0(Kn

A), where A is any positive constant. Then, the series ^une~VnS 

converges f or 9?(s) > 0 and 
00 

lim 2 2 Une~VnS = U. 

THEOREM 2. The Dirichlet's series definitions of summahility in­
clude (X, 1) summahility provided that vn is a logarithrnico-exponential 
function of \n which tends to infinity with n hut not as slowly as log n nor 
faster than Xn

A, where A is any positive constant however large. 

We shall understand in both theorems that s=<r-\-ir approaches 
zero over a point set lying within an angle with vertex at the origin 
such that 

| am s\ S a < w/2. 

Theorem 1 reduces to Hardy's theorem for the case that vn=\n. 
We observe further that the restriction that vn+i — z>n—>0 as n—* oo of 
Hardy's theorem has been eliminated in Theorem 1. 

Theorem 2 eliminates the initial restriction of Theorem 1 and thus 
affords a regulation inclusion theorem. Theorem 2 recalls the follow­
ing theorem previously established by the author, f 

THEOREM 3. The Dirichlet's series definitions of summahility include 
(C, r) summahility provided that vn is a logarithrnico-exponential func­
tion of n which tends to infinity with n hut not as slowly as log n nor 
faster than nA, where A is any positive constant however large. 

This theorem is at once slightly more general and slightly less gen­
eral than Theorem 2. To understand this apparent contradiction we 
need to make use of the following theorem due to Hardy. % 

THEOREM 4. If the series (1.1) is summahle (X, r) to the sum U, and 
if vn is a logarithrnico-exponential function of\n such that vn = OÇKn

A)> 
where A is any positive constant, then the series (1.1) is summahle (v, r) 
to the sum U. 

* Hardy, Proceedings of the London Mathematical Society, (2), vol. 15 (1916), 
pp. 72-88, p. 75. 

f Loc. cit., footnote 3, p. 105. 
% Loc. cit., footnote 4, p. 72. 
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Some examples of the equivalence and inclusion* relations implied 
by this theorem are 

(log8 n, 1) 3 (log2 n, 1) 3 (log n, l )«( [ log n]\ 1) D {n, 1) 

(2.1) - (C, 1) *> (»', 1) « (» log », 1) D (*», 1), 
r > 0, fi > 1. 

Incidentally, summability (kn, 1), for k>l9 is equivalent to conver­
gence, f 

I t is also pertinent to this discussion that none of the (X, 1) meth­
ods can include summability (C, r) for r>\.% On the other hand, it 
follows from an example given by Hardy § that summability (C, r), 
for r arbitrarily large, cannot include summability (log n, 1). 

I t follows as a result of Theorem 3 that all of the Dirichlet's series 
methods of summation which include (C, r) summability include all 
of the (X, 1) methods equivalent to (C, 1) summability. Theorem 2 
involves a wider class of (X, 1) methods than Theorem 3 but implies 
nothing as to (C, r) summability for r>\. 

The particular method of Riesz means, summability (log n, 1), has 
been designated as logarithmic summability ,|| and has been the source 
of a number of investigations relating to the summability and con­
vergence of slowly oscillating series. Thus, it is of especial interest 
that Theorem 2 affords a means of exhibiting a class of Dirichlet's 
series methods of summation which include summability (log n, 1). 
This result is expressed in the following corollary to Theorem 2. 

COROLLARY. The Dirichlet's series methods of summation include 
summability (log n, 1) provided that vn is a logarithmico-exponential 
function of n which tends to infinity with n but not as slowly as log n nor 
faster than (log n)A, where A is any positive constant however large. 

3. Proofs of Theorems 1 and 2. The proofs of Theorems 1 and 2, 
which for the present are carried simultaneously, are based on several 
theorems due to Hardy and Riesz to which we shall refer as the occa­
sion arises. 

* We understand AdB to mean that every series summable by a method A is 
also summable by a method B to the same limit, or that the method B includes the 
method A. Further, we interpret A~B to mean that the two methods are equivalent, 
tha t is, each method includes the other. 

t Hardy and Riesz, The General Theory of Dirichlet's Series, Cambridge Tracts 
in Mathematics and Mathematical Physics, no. 18, p. 35. 

X H. L. Garabedian and W. C. Randels, Duke Mathematical Journal, vol. 4 
(1938), pp. 529-533, p. 531. 

§ Loc. cit., footnote 1, p. 310. 
|| Hardy, loc. cit., footnote 4. 
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Since by assumption 

00 

(3.1) ^uner>«a 

77 = 1 

is summable (X, 1), for s = 0, to the sum U, it is also summable (*>, 1), 
for s = 0, to the same value. This statement follows from Theorem 4. 

Since (1.1) is summable (v, 1), (3.1) is uniformly summable (v, 1) 
throughout the angle a to the sum f(s). This statement is due to 
Hardy and Riesz.* 

Inasmuch as (3.1) is summable (J>, 1) to the sum £/, for s = 0, and 
since (3.1) is uniformly summable {v, 1) to the sum f(s) throughout 
the angle a, f(s)—>U as s—»0 along any path lying entirely within the 
angle a. This follows from another theorem due to Hardy and Riesz. f 

If the hypotheses of Theorem 1 obtain and if {vn+\ — vn) is a null 
sequence, then the series (3.1) converges for $l(s) >0 . J The extra re­
striction will be eliminated by an argument given below. Now, the 
series (3.1) converges to the value f(s) to which it is also summable 
(j>, 1). I t follows that the value approached as s—>0 must be the same 
in both cases. Thus, with the restrictions on vn which have been 
stated, 

00 

lim ]T) une~VnS =• £/. 

This establishes Theorem 1. 
The abscissa of convergence of a Dirichlet's series is given by the 

formula§ 

<r0 = lim sup (log | sn | )/vn. 
n—K» 

Now, it is known that if the series (1.1) is summable (v, 1) to the 
value U, then || 

?n = tf^n+l/O'n-fl — Vn)) + U. 

Thus, it is easily verified that if the series (1.1) is summable {y, 1), 
then sn = o(n2). Accordingly, we have in this case 

* Hardy and Riesz, loc. cit., footnote 8, Theorem 23. 
t Hardy and Riesz, loc. cit., footnote 8, Theorem 28. 
J Hardy, loc. cit., footnote 1, p. 311. It is assumed in Hardy's theorem that 

Xn+i/X„-»l. However, we note that , of the (X, 1) methods listed in (2.1), this restriction 
eliminates only the trivial case for which \n = kn, (&>1). 

§ Hardy and Riesz, loc. cit., footnote 8, Theorem 7. 
|| Hardy and Riesz, loc. cit., footnote 8, Theorem 21. 
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co ^ lim sup (2 log n)/vn. 
ft-» oo 

In order that <r0 ^ 0 , in which case (3.1) will converge in the right half 
of the s-plane, it is sufficient that vn tend to infinity faster than log n. 
The argument used to complete the proof of Theorem 2 is the same 
as the one used above in connection with Theorem 1. 

Notice that if {vn+i — vn} is not a null sequence, then vn tends to 
infinity faster than log n. This eliminates the extra restriction used 
in the proof of Theorem 1. 

NORTHWESTERN UNIVERSITY 

ON CERTAIN IDEALS OF DIFFERENTIAL POLYNOMIALS* 

J. F . RITT AND E. R. KOLCHIN 

Introduction. Let S be an ideal of differential polynomials in the 
unknowns yif • • • , yn- If the manifold of S is composed of s mani­
folds 9Ki, • • • , Wis not necessarily irreducible, none of which has a 
solution in common with any other, S has a unique representation 
as the product of 5 ideals Si, • • • , Sa whose manifolds are, respec­
tively, the aW.-.f 

Most of the present note is concerned with decompositions of the 
foregoing type and considers the case in which one of the 2)?*, say 9D?i, 
is composed of a single solution, that is, of a set of functions 
% ' ' ' y Jn contained in the underlying field. We shall examine, for 
this special case, the structure of the ideal Si. Details will be given 
only for the case of a single unknown ; the extensions to several un­
knowns are too obvious to require explicit mention. It will suffice, 
furthermore, to treat the case in which TOi is composed of the solution 
y = 0. 

In §9, we consider a problem closely related to the theorem of de­
composition stated above. 

1. On the structure of Si. Let S be an ideal of forms in the un­
known y. Let 3̂  = 0 be an essential irreducible manifold for S. Let S 
be the product of Si and S2 where Si has y = 0 as its manifold and S2 

does not admit ;y = 0 as a solution. Let p be a positive integer such 
that yp is contained in Si. 

* Presented to the Society, September 8, 1939. 
t Proceedings of the National Academy of Sciences, vol. 25 (1939), p. 90. Product 

is defined in the expected way. That the intersection of the 2» is identical with their 
product follows immediately from the fact that the 2», considered as algebraic ideals, 
are paarweise teilerjremd. See van der Waerden, Moderne Algebra, vol. 2, p. 46, 


