
IMBEDDING THEOREMS IN DIFFERENTIAL GEOMETRY* 

T. Y. THOMAS 

The matters which I shall discuss today will be largely concerned 
with the general problem of imbedding a coordinate manifold of class 
Cr in a euclidean space of sufficiently many dimensions. I imagine 
you all have a fair idea as to what is meant by an w-dimensional 
manifold of class Cr. Briefly this may be described as a Hausdorff 
space each point of which admits a neighborhood homeomorphic to 
the interior of a sphere in an ^-dimensional euclidean space. We then 
suppose that the coordinate systems which may be introduced into 
these neighborhoods by these homeomorphisms are such that the co­
ordinate relations which exist in the intersection of two such coordi­
nate neighborhoods are of class Cr, that is, possess continuous partial 
derivatives to the order r inclusive. Of course when we consider im­
bedding theorems in differential geometry, which is the title of this 
address, one usually thinks, possibly from historical reasons inci­
dental to the development of the subject, that the given space is 
endowed with a Riemann metric, and is then concerned with the 
problem of isometric imbedding. We shall also have something to 
say about the problem of isometric imbedding, although in doing so 
we shall limit ourselves to results of a general character. Of necessity 
most of the mathematical details must be omitted from our discussion 
however interesting these may be, but here and there certain detailed 
considerations will be introduced when it appears that these are di­
rectly understandable and may be treated with dispatch. 

Before proceeding to the discussion of our particular subject I 
should like to say a few words about the analogous purely topological 
imbedding problem. I have in mind principally the classical result of 
Menger [ l ] and Nöbeling [2] to the effect that every w-dimensional 
compact metric space is homeomorphic to a subset of the euclidean 
space of 2n +1 dimensions. Let A and B be two compact metric spaces 
and let M denote the set of all continuous maps of A into subsets of 5 . 
If ƒ and ƒ ' are two elements or points of If, we define the distance 
between these points to be the maximum value of the distance of the 
points ƒ(x) and ƒ'(#) as x runs over the points of the space A. With 
this definition of distance M becomes a metric space and may readily 
be shown to be complete, that is, every Cauchy sequence in M con-
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verges. Now Hurewicz [3] has given a very simple and elegant proof 
of the Menger-Nöbeling imbedding theorem based on his idea of the 
e-map. An element ƒ of the above metric space M is called an e-map 
of A into B if every two points of A whose map points coincide in B 
have a distance less than e from one another. Evidently if ƒ is an 
e-map for every €>0, it is a homeomorphic map of A into B and the 
intersection of any sequence of e-maps with e approaching zero is 
identical with the set of all homeomorphic maps of A into B. Now 
it may be shown that for any e > 0 the e-maps form an open set in M. 
Hurewicz then proceeds to show that if B is taken to be a complete 
sphere in the euclidean space of 2n-\-l dimensions, the set of all 
e-maps for any value of e > 0 is dense in the map space M. It follows 
by the Baire theorem that the compact metric space A can be mapped 
topologically into a subset of the 2n+l dimensional euclidean space 
and in fact that any continuous map of A into this euclidean space 
can be changed into a topological map by an arbitrarily small altera­
tion. 

I should now like to turn to the consideration of the work of Hassler 
Whitney [4] on the imbedding of coordinate manifolds in euclidean 
space. Owing to the extreme elegance of the treatment of the purely 
topological imbedding problem the methods there employed may 
very well serve as a model or perhaps as a goal toward which we may 
strive in our discussion of the imbedding of coordinate manifolds. 
I propose therefore to present some of the results of Whitney from 
this standpoint. First let me say that if the question is raised as to 
why the topological imbedding theorem does not suffice in the present 
case, the answer is the following: In the imbedding problem for co­
ordinate manifolds of class Cr we demand more. We require in fact 
that the functions defining the imbedding shall be of class Cr and 
shall thus leave unaffected the underlying coordinate relationships 
which we recognize as a component part of the structure of the mani­
fold. 

In accordance with the above proposal let us impose the condition 
that our coordinate manifold is compact and metrizable. Now we 
know from point set theory that a compact Hausdorff space can be 
given a metric in the topological sense if, and only if, it is separable. 
We shall now show that a positive definite quadratic differential form 
can be defined over a compact and separable manifold of class Cr, 
the coefficients of this form being of class Cr~l as functions of the 
allowable coordinates of the manifold. Thus the coordinate manifold 
becomes a Riemann space of class Cr~l in the usual terminology. 

It is easy to show the existence of a function h(x) of class C00 de-
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fined for — oo < # < oo such that 

(a) h(x) = 0, x ^ — 1, x èz I, 

(b) h{x) = 1, - 1/2 ^ x S 1/2, 

(c) 0 < h(x) < 1, - 1 < x < - 1/2, 1/2 < x < 1. 

Now let P be any point of our coordinate manifold and denote by 
N{P) a coordinate neighborhood of P . We suppose the coordinates xa 

so chosen in N(P) that xa = 0 at P . By a coordinate transformation in 
N(P) of the form xa = axa (a = const.) we can so enlarge the coordi­
nate representation of this neighborhood that it will contain a cube or 
box — l ^ # a ^ l . Denote the interior ( — l < x a < l ) of this box by V 
and the box itself or the enclosure of U by Ü. We shall also consider 
the smaller box Ü' defined by —1/2 Sxa ^ 1/2 and its interior V'. In 
consequence of the above assumptions (compactness and separabil­
ity) the coordinate manifold M is bicompact, that is, every covering 
of the manifold by open sets contains a finite covering. Hence a cover­
ing of the manifold M by the above open sets V' will contain a finite 
covering which we shall denote by C/i , • • • , V[. Let us now put 

H = h(xl) • • • h(xn) in Ü, H = 0 in M - Üy 

Ha = xaE in Ü, Ea = 0 in M - Ü, 

where U refers to any one of the coverings of the above finite set. 
Then H=l and Ha = xa in Ü'. I t is evident that the functions H 
and Ha are scalars of class Cr over M. Let us denote the functions 
Ha when determined in connection with the neighborhood VI by 
0 \ • • • , cf)n and when determined in connection with the neighbor­
hood V{ by 0 n + 1 , • • • , <£2w, and so on. Then the equations 

dp dp 

„ dxa dxP 

define the components of a covariant tensor g of class Cr~l over M. 
Now the matrix ||ô0"/3xa|| has rank n at every point P of M. In fact 
any point P is interior to one of the neighborhoods VI and in this 
neighborhood Ha—xa. Hence the matrix ||d0v/cba | | must contain the 
diagonal determinant | h f \ at P . Thus at any point P of M the above 
functions ga$ appear as the coefficients of a positive definite quadratic 
differential form by which a Riemann metric is defined in M. 

Conversely if a (connected) compact manifold M admits as above a 
Riemann metric g, we may metrize M in the topological sense by de­
fining the distance p(P, Q) of two points P and Q as the greatest 
lower bound of the lengths of all curves of class Cr (broken or con-
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tinuously differentiate) which join P to Q. It follows that M is sepa­
rable. The result obtained may perhaps be stated as the following 
theorem. 

RIEMANN METRIZATION THEOREM. Any compact manifold M of class 
Cr with r^l admits a Riemann metric of class Cr~l if, and only if, 
M is separable. 

From now on we shall consider a fixed metric g of class Cr~l in M 
which exists in accordance with the above theorem. When it is desired 
to measure distances independently of coordinate systems this metric 
will be used. Within the separate coordinate systems the euclidean 
metric may however sometimes be employed to advantage. 

Let ƒ be a map of class Cr of M into the euclidean space Em . The 
dimensionality m of the euclidean space will not be fixed for the pres­
ent but will be determined later on the basis of our discussion. Let 5 
be the set of all such maps ƒ. We define a metric in 5 in the following 
manner : If <f> and \[/ are two elements of 5, let us put 

rfo(*(x), *(*))={ E [**(*)-^'W][*'(*)-^(*)]}1/2, 

W H , W ) = { E r - • ^ka..^-^»..^][*;„...,-^ÎM-.-]}172, 
where it is to be understood that Latin indices have the range 
1, • • • , m and that Greek indices have the range 1, • • • , n and both 
sets of indices are to be summed when repeated in accordance with 
the usual convention. Note also that du • • • , dr involve successive 
covariant derivatives of the functions <f> and xf/ and that dr involves 
the rth covariant derivative which is the highest covariant derivative 
that can be formed under the hypothesis that the metric g is of class 
Cr~l and the maps 4> and \p are of class Cr. Put 

D{<t>{%), f(x)) = dQ(4>(x), *(*)) + • • • + *(*(*), *(*)). 

Then D{<j>{x)i \l/(x)) is a continuous function on M. Since M is bicom-
pact, the function D(<j>(x), $(x)) assumes its maximum value at a 
point of M. Denote this maximum value by D(<j>, x//) and define 
D((j>, \p) as the distance between the points <f> and \p of 5. I t is easily 
seen that with this definition of distance 5 is a metric space. More­
over it can readily be shown that 5 is complete. The fact that the 
map space S whose elements are the maps of class Cr of the coordinate 
manifold M into the euclidean space Em thus appears as a complete 
metric space is in strict analogy with the situation in the topological 
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imbedding problem, and imbedding theorems which are likewise anal­
ogous to those of the topological theory can be demonstrated. 

We shall say that a map or point </> in S is regular if the matrix 
||d0*/3#a|| has rank n at every point of M. Otherwise <f> will be said to 
be singular and the points at which the above matrix has rank less 
than n will be called the singular points of the map. The set of all such 
singular points will be called the domain of singularity of the map <j>. 

As one can readily imagine, there are many details in this demon­
stration which have no counterpart in the purely topological theory. 
It seems inadvisable to enter into such details here especially in view 
of the fact that the main results can be stated directly in terms of the 
point of view which we have now established and when so stated are 
immediately understandable. We shall therefore content ourselves 
here with the following statement of what may be classified as two 
of the main imbedding theorems for coordinate manifolds: 

I. If r ^ 2 and m ^ In, the regular maps form an open and dense set 
in S. 

II . If r^l and m ^ In + 1 , the regular topological maps form an open 
and dense set in 5. 

Since ƒ = 0 is an element of 5, it follows that the sets which enter 
into the above theorems are nonvacuous. Thus any compact and 
separable manifold of class Cr with r ^ 2 can be imbedded by a regu­
lar topological map of class Cr in the euclidean space of 2n + l di­
mensions and an infinitesimal alteration in any map of class Cr will 
result in a regular topological map in strict analogy with the topologi­
cal imbedding theorem (Whitney [4]). 

There is perhaps a mild interest in considering the extreme case in 
which the imbedding of the coordinate manifold is in the euclidean 
space En and thus of the same dimensionality as the manifold itself. 
Assuming as above that the manifold is compact and separable and 
of n^2 dimensions, it suffices now to suppose that it is of class Cr 

with r è 1. We now let 5 be the complete metric space whose elements 
are the maps of class Cr of the manifold M into the euclidean space En 

and denote by 2 the set of all points in S which correspond to maps 
whose domain of singularity is nowhere dense in M. It may then be 
proved that the following theorem holds. 

I I I . The set 2 is dense in S. 

It follows that the manifold M can be imbedded in the euclidean 
space of n dimensions by a map of class Cr whose domain of singular­
ity is closed and nowhere dense in M. In particular it is thus possible 



846 T. Y. THOMAS [December 

to define a Riemann metric of class Cr~l in M which is nonsingular 
and locally flat in the ordinary sense except over a closed and no­
where dense set in the space (Thomas [5]). 

The methods and results which we have so far considered cannot be 
applied to the case of the analytic manifold. Nor shall we now have 
much to say about such manifolds since as far as I am aware there 
are no results of a general character pertaining to the imbedding of 
analytic manifolds in euclidean space. Recently Bochner [ó] has 
shown that a compact and separable analytic manifold which bears 
an analytic Riemann metric, that is, a compact analytic Riemann 
space, can be imbedded analytically and topologically in a euclidean 
space of 2n+l dimensions. Bochner's demonstration consists in show­
ing that it is possible to approximate a map of class Cr with r ^ 2 of 
the manifold in the euclidean space as closely as desired by an ana­
lytic map. Selecting the map of class Cr to be topological, it follows 
that not only will the analytic map exist but it will likewise be topo­
logical. Yet it must be confessed that this result does not constitute 
a strict imbedding theorem for analytic manifolds owing to the as­
sumption of the existence of the Riemann metric. In fact under this 
assumption one would naturally inquire into the question of the iso­
metric imbedding (in the differential sense) of the Riemann space into 
euclidean space. Some time ago I considered the question of the possi­
bility of joining two or more arbitrary points of an analytic manifold 
by an analytic arc and was able to accomplish this only under the 
assumption that the manifold possessed an analytic affine connec­
tion [7]. While the assumption of the existence of the affine con­
nection is presumably somewhat weaker than Bochner's assumption 
of the Riemann metric, it is nevertheless an assumption of analogous 
character. Apparently one is here faced with an underlying difficulty 
the essential idea for the solution of which remains as yet undiscov­
ered. 

Let us now turn our attention to the problem of the isometric im­
bedding of a Riemann space in euclidean space to which in fact our 
discussion has naturally led. This problem may be identified with the 
problem of finding a solution fa, • • • , <j>m of the system 

A dfa dfa 
,•=1 dxa dxP 

over the Riemann space with fundamental metric tensor g. The result 
that an n dimensional Riemann space can be imbedded locally and 
isometrically in a euclidean space of w(w + l ) /2 dimensions seems to 
have been enunciated first by Schlaefli [8]. Janet [9] is usually con-
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sidered the first to have made a serious attempt to prove the local 
isomorphic imbedding theorem for Riemann spaces, the result at 
which he arrived being that above stated. This was followed by proofs 
of the same theorem by Cartan [lO] and Burstin [ l l ] . In all cases the 
theorem in question was made to depend on more or less standard re­
sults in the theory of systems of differential equations and so need not 
be considered further on this occasion. 

With regard to the question of the isomorphic imbedding of Rie­
mann spaces in the large in euclidean space no general result seems 
to be known. It would appear therefore that here one would find an 
interesting although difficult field for investigation. 

I t is of course well known that the condition for the local iso­
morphic imbedding of a Riemann space of n dimensions in the eu­
clidean space of n dimensions is that the curvature tensor shall vanish 
over the Riemann space. If furthermore the given Riemann space is 
simply connected, this condition suffices for its complete imbedding 
in the n dimensional euclidean space. 

The problem of determining the conditions under which an n di­
mensional Riemann space is of class one, that is, can be imbedded 
isometrically in a euclidean space of n + 1 dimensions but not in an 
n dimensional euclidean space, admits in general a solution of some 
degree of refinement. As I have occasion to believe that this imbed­
ding theorem is not generally well known I should like to indicate in 
slight detail at least some of the essential features on which the solu­
tion of this problem depends. 

Let R denote a Riemann space of class C2. It is then well known 
that the following system of equations, 

dy* . dyU A da* " 

ox01 ox? y=i axa
 M>v==i 

constitutes necessary conditions for the isomorphic imbedding of R in 
w + 1 dimensional euclidean space, that is, for R to appear as a hy­
persurface in the euclidean space. In these equations the yi denote 
the coordinates of the euclidean space, the T's are the components 
of the Christoffel symbols of the Riemann space R, the b's are the 
coefficients of the second fundamental form of the hypersurface and 
the o-'s are the components of the vectors in the euclidean space nor­
mal to the hypersurface. As integrability conditions of the above sys­
tem we have 

bap,y = bay,p (Codazzi equations), 

Baiiya = baabfiy — baybp8 (Gauss equations), 
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in which the first set of these equations involves the components of 
the covariant derivative of the above tensor b and the second set 
of equations contains in its left member the components of the com­
pletely covariant form of the curvature tensor of the Riemann space 
R. In the above general form these equations were first obtained by 
Voss. They are usually however referred to as the Gauss and Codazzi 
equations since they are equivalent to conditions originally found by 
Gauss and Codazzi for the special case of two dimensional surfaces. 
The usual isomorphic imbedding theorem for Riemann spaces of 
class one can now be stated as follows : A n open and simply connected 
coordinate neighborhood U of the above Riemann space R can be im­
bedded isomorphically in the n + 1 dimensional euclidean space if, and 
only if, the Gauss and Codazzi equations are satisfied in U. It is well 
known too that the set of quantities ba$ satisfying the Gauss and 
Codazzi equations in the neighborhood If appear as the coefficients 
of the second fundamental form of the hypersurface which exists by 
the above theorem and that when these quantities bap are fixed the 
hypersurface is determined to within a motion in the euclidean space. 

The above theorem cannot be considered to give a solution of the 
local isometric imbedding problem in any fundamental sense. For the 
conditions in question are of differential character and in this respect 
are analogous to the conditions by which the imbedding itself is de­
fined. On the other hand the condition for a Riemann space to be 
locally flat or to be capable of being imbedded locally in a euclidean 
space of the same dimensionality is expressible by the vanishing of a 
pure invariant, namely the curvature tensor of the given Riemann 
space. I t is likewise possible to express conditions for a Riemann 
space to be of class one in terms of the behavior of its intrinsic in­
variants and I should now like to indicate some of the steps by which 
these conditions can be established. 

Let us say that a hypersurface of the euclidean space of n + 1 di­
mensions is of type one if the rank of the matrix of the coefficients 
of the second fundamental form is zero or one and that the hypersur­
face is of type r where r is an integer of the set 2, • • • , « , if the rank 
of this matrix is r over the hypersurface. As so defined the type num­
ber is not an intrinsic invariant but depends upon the relation of the 
space to the euclidean space in which it is imbedded. It can be shown 
however that the type number of a hypersurface is determined by its 
intrinsic properties, that is, by the first fundamental form. As a con­
sequence we can speak of the type number of a Riemann space R of 
class C2 regardless of whether or not this space can be considered as a 
hypersurface of the euclidean space. Let us also say that a hypersur-
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face is intrinsically rigid if the second fundamental form is uniquely 
determined (to within algebraic sign) by the first fundamental form 
and the equations of Gauss and Codazzi. It follows that an intrinsi­
cally rigid hypersurface cannot be subjected to a continuous deforma­
tion in the euclidean space without altering its internal metric proper­
ties. The following theorem can also be proved: A hypersurface of 
type T ^ 3 is intrinsically rigid. 

The solution of the problem before us depends essentially on the 
happy circumstance that under certain rather general conditions the 
equations of Codazzi are consequences of the equations of Gauss. In 
fact it can be shown that if R is any Riemann space of class C2 and 
type not less than 4 and if there exists a set of symmetric quantities 
&«j3 of class C1 in a coordinate neighborhood U which satisfy the equa­
tions of Gauss, then the equations of Codazzi will automatically be 
satisfied in 27. With this result the determination of the conditions 
for a Riemann space to be of class one is reduced essentially to an 
algebraic problem. It can be shown that the Gauss equations con­
sidered as equations for the determination of the symmetric quanti­
ties bap admit a resultant system and to this system further algebraic 
conditions can be added in the form of inequalities which are both 
necessary and sufficient for the reality of the solutions. Assuming that 
the Riemann space under consideration is of class C2 and that the 
components of its curvature tensor are continuous functions, which 
is somewhat weaker than the requirement that the space be of class 
C3, the general result at which one arrives is the following: There 
exist sets of polynomials Fi, F2 and Fs in the components of the curvature 
tensor such that a simply connected n-dimensional Riemann space of 
type not less than 4 can be imbedded isometrically in the euclidean space 
ofn + 1 dimensions if, and only if, Fi>0, F2^0 and 7*3 = 0 over the space 
(Thomas [12]). For want of a better name I have said that such con­
ditions constitute an algebraic characterization. With some modifica­
tions in procedure it is possible to extend the above result to Riemann 
spaces of type 3 and in fact to spaces of variable type. Moreover the 
type of a Riemann space is itself capable of being characterized alge­
braically and so may be included if desired in the algebraic character­
ization. I t must be emphasized however that without the above re­
striction on the type of the Riemann space these algebraic procedures 
are not applicable and indeed it is questionable if the class of Riemann 
spaces which can be imbedded isometrically in the euclidean space of 
one higher dimension admits an algebraic characterization. 

These results have recently been extended by C. B. Allendoerfer 
[13] to Riemann spaces of class greater than one although the meth-
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ods exhibit considerable formal complication owing without doubt to 
the nature of the problem. 
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