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ALGEBRAIC POSTULATES AND A GEOMETRIC INTER­
PRETATION FOR THE LEWIS CALCULUS OF 

STRICT IMPLICATION 

TANG TSAO-CHEN 

1. Two further postulates for a Boolean ring with a unit element. 
If addition, subtraction, and multiplication are properly defined in 
logic, it may be shown* that the postulates for these operations are 
identical with those in a ring, in which every element is idempotent, 
satisfying the postulate XX ~— X . Such a ring is called a Boolean ring. 
The postulates for a Boolean ring with a unit element are therefore 
the following : 

A. Addition is always possible, commutative, and associative. 
B. Multiplication is always possible, associative, and both left- and 

right-distributive with respect to addition. 
C. Subtraction is always possible. 
D. xx = x. 
E. There exists an element 1 such that xl = x for every element x in 

the ring. 

Here we shall introduce a new operation, represented by x°°, 
which satisfies the following two further postulates : 

Fi. For every element x there exists an element x00 such that X X "•"•" X • 
F2. For any two elements x and y we have (xy)00 = x^y00. 

The postulates A-F2, obtained above, may be called the algebraic 
postulates for the Lewis calculus of strict implication. 

2. A geometric meaning of the symbol x00. A geometric meaning f 
may be attached to x00 as follows : Let x be a point set in the euclidean 

* See M. H. Stone. The theory of representations f or Boolean algebras, Transactions 
of this Society, vol. 40 (1936), pp. 37-53. 

t Another geometric meaning of Xe0 may be obtained by assuming l00 to be any 
one fixed point or any set of fixed points (finite or infinite in number and continuous 
or discontinuous in character) and setting x00 = ^l00. If we assume that 1* is a fixed 
point, we have then the following property: 

G. Xe0 is two-valued, that is, x"> = l°° or O00, 

which is independent of the postulates A-F2. This sub-Boolean algebra with the postu­
lates A-G does not become the ordinary two-valued Boolean algebra, unless we as­
sume further that x is two-valued. 
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plane; then x00 may be taken as the interior points of x (the set of all 
points p such that some circle with center at p lies entirely within x). 
Then the postulates Fi and F2 are satisfied. Moreover (1—#)°° is the 
set of points interior to the complement of x, that is, exterior of x\ 
1 —x00 — (1 — x)00 is the frontier of x; and 1 — (1 —x)00 is the closure of x, 
that is, x plus its frontier. 

3. A geometric interpretation of Lewis' possibility functions. When 
p is a proposition, Lewis introduces an undefined idea <>£> which is 
read up is possible" and may be called the possibility function of p. 
Now, if a class x be given, O* must have a corresponding meaning 
which is obtained from the following definition : 

DEFINITION. <>X = 1 — (1—X)°°. 

By means of the definition of ~x, we obtain ~x = l— x; and we 
have the following theorems : 

THEOREM 1. Ox is the closure of x. 

THEOREM 2. ~<>x = (1 — x)00 is the exterior of x. 

THEOREM 3. O ^ x = 1 — x00 is the closure of the complement of x. 

THEOREM 4. ~0~x = x°° is the interior of x. 

On the basis of the postulates A-F we may then prove abstractly 
the following theorems: 

THEOREM 5. O00 = 0 and ^ < > ^ 0 . = .0; that is, the interior of the null 
class is a null class. 

THEOREM 6. ~<>~x.~Ox: = .0, and xoo(^x)oo = 0; that is, if x is 
a class y then the interior and the exterior of x have no point in common. 

DEFINITION. xf — 1 — x00 — (~x)°°, that is, xf is the frontier of x. 

THEOREM 7. xf = (~x)f, that is, x and ~x have the same frontier. 

THEOREM 8. xf+x°° + (~x)°° = l, xf + (~0~x) + (~Ox) = l; that 
is, the frontier, the interior, and the exterior of x form the whole plane. 

THEOREM 9. Ox. = .x '+x0 0 and <>%> = .ocf + (~0~x)', that is, <># 
is the sum of the frontier and the interior of x. 

THEOREM 10. 0~%- = .xf+(~x)°° and 0 ~ * - = .xf + ~<>x'y that 
is, O^x is the sum of the frontier and the exterior of x. 

THEOREM 11. x(~x)°° = 0 and x.~Ox' = -0; that is, the class x and 
its exterior have no point in common. 
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THEOREM 12. x = xco+xxf andx = (~0~x)+xxf; that is, the class x 
is the sum of its interior and the part of its frontier which belongs to it. 

THEOREM 13. (~x) = (~x)cc+(~x)xf and (~x) = (~Ox) + (~x)xf; 
that is} the class ~x is the sum of the exterior of x and the part of its 
frontier which belongs to ~x. 

4. Theorems corresponding to Lewis1 postulates. In Symbolic 
Logic by Lewis and Langf ord the symbol p -^ q is defined by 
p -3# . = .~0(p~q). Changing the propositions p and q into the 
classes x and y, we get the definition of x -3 y : 

DEFINITION. # -3y . = .~ <>(x~y). 

The geometric meaning of x -3 y is very clear, for its definition states 
that x-^y means the exterior of x^y\ that is, if, for example, two 
curves xc and yc divide the plane into four parts xy, ~xy, x~y, and 
~x<^y, as in the figure, then x-3 y means the interior of x Dy, which 
is the sum of xy, ~xy, and ~x~y. In other words, we have the fol­
lowing two theorems : 

THEOREM 14. x'zy.^ ,xy-\-(~xy) + (~x~y).* 

THEOREM 15. x-33/. = .~<>~(xoy). = .(x^y)™. 

PROOF. By the definition of ~x, ~x. = . 1 — x, and we see that 

xy + ( ~ xy) + (~ x ~ y) = xy + (1 — x)y + (1 — x)(l — y) 

= xy -\- y — xy -{- 1 — x — y -\- xy 

= 1 — x + xy 

= (x D y). 

* xD y is, of course, defined as ~(x~y) which is 1 —x+xy. 
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By Theorem 4 
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DEFINITION. i = ( ^ O 0 ) . 

This definition of i may be replaced by the following theorem : 

THEOREM 16. i = l°° and i = (~0~l). 

PROOF. We have i = ( ~ 0 0) = [ ~ 0 ( 1 - 1 ) ] = ( ~ 0 ~ 1 ) = 1°°, by 
Theorem 3. 

THEOREM 17. x-$x. = J. 

PROOF. We have x-$x. = . ^<Xx^a : ) = . ^ O 0 = .i . 

If £ and g are propositions, then we have the following theorem:* 

If p-3q is asserted, then p -3 q. = . i. 

Lewis' postulates may therefore be written as follows: 

pq -3 qp. = .i, 

pq -3 p.^.i, 

p -3 pp. = .i, 

(pq)r -3 p(qr). = .i, 

p -3 ^ ( ~ p). = .i, 

p -3 q.q -3 r:~3 .p -3 r : = . i , 

ƒ>.ƒ> -3 q:-3.q:. = .i, 

o(pq) -30*. = .*. 
The corresponding theorems for classes are obtained by changing the 
propositions >̂, g, r into #, ŷ, 2, respectively: 

THEOREM 18. xy-^yx. = .2'. 

PROOF. We have X3/-33/X. = .xy-3 xy= À by Theorem 17. 
: See this Bulletin, vol. 42 (1936), p. 708, Theorem 9. 
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THEOREM 19. xy-^x. = .i. 

PROOF. We have xy-3 x. = ,~<Ç>(xy~x) = .~O(y0) = . ^ O 0 = .i. 

In like manner we may prove Theorems 20-22 below: 

THEOREM 20. x-3 xx. = .i. 

THEOREM 21. (xy)z-%x(yz). = .i. 

THEOREM 22. x-3 ~(~x). = .i. 

THEOREM 23. x-3y.y-^z:-^.x-3z:. = .i. 

PROOF. We have 

x -3 y.y -3 z\-3 .x -3 z\ . — \(xz> y)^(yDz)co. -3 .x ~3 z 

= :(XD y.yDz)00. -3 . x -3 z 

— :(xDy.yDz.xD z)00 .~3.x~3z 

= :(XD y^Çy Dz)°°(xDz)00. -3 .x -3 z 

— : .x -3 y.y-3z.x-3z\~3.x~3z 

= : .x -3 z.x -3 y.y-3z.:-3.x~3z 

= >i, 

where the first five equations can be obtained, respectively, from 
Theorem 15, F2, Theorem 23.1 (below), F2, and Theorems 4 and 15. 
The last equation follows from Theorem 19. 

T H E O R E M 23.1 . xDy .yDz: = \x^y .y'Dz.x'Dz. 

PROOF. We have 

x"D y.yDz: — \(~ x + xy).(~ y + yz) 

= : ̂  x <^ y -f- '—' xyz + xy ^ y + xyyz 

= : ~ x ^ y + ^ xyz + 0 + xyz 

= : ^ x ~ y + yz. 

(i) 

Then 

x'D y.yD Z.XD z. ( ^ x ~ y + yz).(xoz) 

( ^ % ~ y + yz). ( ^ x + xz) 

^x^x^y-\-^ xyz + 0 + xyzz 

^ x ~ y + ~ xyz + xyz 

^ x ^ y + yz 

XD y.yo z, 
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by (1) above. 

THEOREM 24. x.x-^y:-^ .y: 

PROOF. We have 

x.x -3 y: -3 .y:. = ,r ' O (x.x -3 y.~ y) 

' O (# ~ y»% "3 y) 

' O (x ~ y . ^ O (x -

'OO 
y)) 

by Theorem 11 and a definition. 

THEOREM 25. 0(xy)-3<>x. = .i. 

PROOF. By the application of Theorem 25.1 (below), 

O(xy) - 3 0 ^ . = . ^ 0 [<> (xy) ~0 %] 
j O [0(%y) ~ O % ~ O (%y)] 
J O ( ~ O oo. 0) 

by definition. 

THEOREM 25.1. '<>X. ;<>x.~Ç>(xy). 

PROOF. We have, using F2, 

~0 x.~0 (xy): = .(1 — x)°°(l — xy)™, 

= . [(1 - x)(l - xy)]00 

= . (1 — x — xy + xxy)00 

= .(1 - x)00 

= .~ O x, 

where the first step follows by Theorem 1 and the last by Theorem 2. 

5. Theorems corresponding to Lewis' operations. Lewis' substitu­
tion can be performed both on propositions and on classes. We con­
sider therefore only adjunction and inference. For this purpose, we 
first establish the following two theorems : 

THEOREM 26. x.x-^y: = :xy.x-% y. 
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PROOF. By Theorem 11 we have 

x ~ y.~ O (x ~ y): = .0, 

or 

x(l — y).x -3 y: = .0 , 

or 

(x — xy).x -3 y: = .0 , 

or 

(x.x -3 ;y) — (#;y.a; -3 ;y) = 0, 

from which we get at once Theorem 26. 

THEOREM 27. (1) Ifi-^x. = . i , ^ew ix = i. (2) Conversely, ifix = it 

then i-^x. — .i. 

PROOF. We obtain, using Theorem 16, F2, and Theorem 26, 
ix = l°°x = (1.l)°°x = l00!00^ = iix = ixi = ix(i-3 x) = i(^'-3 #) = w = i. 

The proof of the converse theorem is the following: We have 
H x . = . ^ O ( i ^ x ) = . ^ O [ i ~ ( i x ) ] = . ~ 0 ( i ^ i ) = . ^ O 0 = . i , by 
definition. 

DEFINITION. TTe write \-x, when and only when ix = i. 

Thus, we may write \—x, when x = 1 or x — i. For example, Theorem 
18 is equivalent to f— .xy-^yx. 

We can now prove the theorems corresponding to adjunction and 
inference. 

THEOREM 28. If hx and \-y, then \-(xy). 

PROOF. We have i(xy)=iixy — ixiy = ii = i. Hence by definition, 
\-(xy). 

THEOREM 29. If h-x, and \- .x-%y, then \-y. 

PROOF. We obtain iy = iiy = (ix)(i.x-^y)y = ixi(x-3 y)y — iixy(x-3 y) 
= iix(x-3y) = (ix)i(x-% y) =ii = i, using Theorem 26. Therefore iy~i; 
hence by definition \-y. 

6. Miscellaneous theorems. We state the following theorems, each 
without proof: 

THEOREM 30. x-^y. = :i.x-^y. 

THEOREM 31. If x-^y. = .i, and y-%z. = . iy then x-^z. = . i. 
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THEOREM 32. If x-^y. = .i and x-$y. -3 .u-^v: = À, then u-^v. 

THEOREM 33. (1) If x-$y. = .i, then \-.x-^y. (2) Conversely, if 
l~ • x -3 y, then x-%y. = . i. 

THEOREM 34. (1) If i-3 x. = .i , then \-x. (2) Conversely, if \-x, then 
i-$x. = .i. 

THEOREM 35. If l-$x. = .i, then \-x. 

7. A relation between Huntington's up in T" and "hp" in this 
paper. In this Bulletin (vol. 40 (1934), p. 733) E. V. Huntington es­
tablished the theorem 

(2) (p<q)*± [(P -3 q) in T] 

from the following definition of (p<q): 

(3) (P <q)^(p = pq). 

It is now my aim to prove the following theorem: 

THEOREM 36. [(p~3 q) in T] <=± (h- .p-3 q). 

PROOF OF [(p-3q) in T]—>(h >p-3q)- By hypothesis, (£-3g) in T. 
By (2) and (3), p^pq. Therefore, £-3#. = >Pq-3q- = -i- Thus 
V-.p-lq. 

PROOF OF ( h .£-3g)->[(p-3g) in r ] . By (2) and (3) (p = pp) 
-^[(P-3P) in T]. Therefore, (p-3p) in 7\ that is, 

(4) i in T. 

But by hypothesis, i.p-$q'. = .^. Hence 

(5) p-3q, = ,i. 

From (4) and (5) we have at once (p-$ q) in 7\ 
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