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ALGEBRAIC POSTULATES AND A GEOMETRIC INTER-
PRETATION FOR THE LEWIS CALCULUS OF
STRICT IMPLICATION

TANG TSAO-CHEN

1. Two further postulates for a Boolean ring with a unit element.
If addition, subtraction, and multiplication are properly defined in
logic, it may be shown* that the postulates for these operations are
identical with those in a ring, in which every element is idempotent,
satisfying the postulate xx=x. Such a ring is called a Boolean ring.
The postulates for a Boolean ring with a unit element are therefore
the following:

A. Addition is always possible, commutative, and associative.

B. Multiplication is always possible, associative, and both left- and
right-distributive with respect to addition.

C. Subtraction is always possible.

D. xx=x.

E. There exists an element 1 such that x1 =x for every element x in
the ring.

Here we shall introduce a new operation, represented by x%,
which satisfies the following two further postulates:

Fi. For every element x there exists an element x such that x*x =x".
F.. For any two elements x and y we have (xy)* =x"y".

The postulates A-F,, obtained above, may be called the algebraic
postulates for the Lewis calculus of strict implication.

2. A geometric meaning of the symbol x*. A geometric meaningf
may be attached to x as follows: Let x be a point set in the euclidean

* See M. H. Stone. The theory of representations for Boolean algebras, Transactions
of this Society, vol. 40 (1936), pp. 37-53.

1 Another geometric meaning of x® may be obtained by assuming 1* to be any
one fixed point or any set of fixed points (finite or infinite in number and continuous
or discontinuous in character) and setting x*=x1*. If we assume that 1% is a fixed
point, we have then the following property:

G. x* is two-valued, that is, x*=1% or 0%,

which is independent of the postulates A-F;. This sub-Boolean algebra with the postu-
lates A-G does not become the ordinary two-valued Boolean algebra, unless we as-
sume further that x is two-valued.
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plane; then x* may be taken as the interior points of x (the set of all
points p such that some circle with center at p lies entirely within x).
Then the postulates F; and F; are satisfied. Moreover (1 —x)® is the
set of points interior to the complement of x, that is, exterior of x;
1 —x®— (1 —x)”is the frontier of x; and 1 — (1 —x)* is the closure of x,
that is, x plus its frontier.

3. A geometric interpretation of Lewis’ possibility functions. When
P is a proposition, Lewis introduces an undefined idea <&#, which is
read “p is possible” and may be called the possibility function of p.
Now, if a class x be given, ¢x must have a corresponding meaning
which is obtained from the following definition:

DEFINITION. Ox=1—(1—x)".

By means of the definition of ~x, we obtain ~x=1—x; and we
have the following theorems:

THEOREM 1. Ox is the closure of «x.

THEOREM 2. ~Ox=(1—x)" 45 the exterior of x.

THEOREM 3. O~x=1—x" is the closure of the complement of x.
THEOREM 4. ~O~x=x" is the interior of x.

On the basis of the postulates A-F we may then prove abstractly
the following theorems:

THEOREM 5. 0° =0 and ~O~0. = .0; that is, the interior of the null
class 1s a null class.

THEOREM 6. ~O~x.~Ox: = .0, and x°(~x)*=0; that is, if x is
a class, then the interior and the exterior of x have no point tn common.

DEFINITION. &/ =1 —x* — (~x)%, that is, x/ is the frontier of x.
THEOREM 7. &/ = (~ux)/, that is, x and ~x have the same frontier.

THEOREM 8. &/ +x°+ (~x)" =1, &/ +(~O~x)+(~Ox)=1; that
is, the frontier, the interior, and the exterior of x form the whole plane.

THEOREM 9. Ox. = ./ +x° and Ox. = .x/ +(~O~x); that is, Ox
15 the sum of the frontier and the interior of x.

THEOREM 10. $~x. = . &/ +(~x)® and O~x.=.x/+~Ox; that
s, O~x 1s the sum of the frontier and the exterior of x.

THEOREM 11, x(~x)* =0 and x.~Ox: = .0; that is, the class x and
its exterior have no point in common.
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THEOREM 12. x=x"+4xx/ and x = (~~x)+xx’; that is, the class x
s the sum of its interior and the part of its frontier which belongs to it.

THEOREM 13. (~x) = (~x)* 4+ (~x)x and (~x) = (~Ox) + (~x)x’;
that is, the class ~x is the sum of the exterior of x and the part of its
frontier which belongs to ~x.

4. Theorems corresponding to Lewis’ postulates. In Symbolic
Logic by Lewis and Langford the symbol p-3¢ is defined by
p3¢.=.~O(p~q). Changing the propositions p and ¢ into the
classes x and y, we get the definition of x 3 y:

DEFINITION. x 3y, = .~ {(x~y).

The geometric meaning of ¥ 3 v is very clear, for its definition states
that x 3y means the exterior of x~y; that is, if, for example, two
curves x¢ and y¢ divide the plane into four parts xy, ~xy, x~y, and
~x~y, as in the figure, then x 3 ¥ means the interior of x 2y, which
is the sum of xy, ~xy, and ~x~y. In other words, we have the fol-
lowing two theorems:

xc ¥°

THEOREM 14. x 2 y. = .xy+ (~xy) + (~x~y).*
THEOREM 15. x3y.=.~O~(x2y). =.(x2y)".
Proor. By the definition of ~x, ~x.=.1—x, and we see that
2y + (~xy) +(~ae~y) =ay+ (1 —a)y+ 0 —x0 -1y
=xy+y—ay+1l—=x—y+axy
=1— x4+ xy
= (x27).

* xD y is, of course, defined as ~(x~y) which is 1 —x+xy.
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By Theorem 4
~O ~(x3y).=.(x3y)",
~O~(®2y).=.~O~ (11— x+ xy)
=.~0[1— 10— x+ xy)]

=.~3 (x — wxy)
=.~0x(l —y)
=.~0 (x~y)
=.x39y.

DEFINITION. 1= (~ ¢ 0).
This definition of 2 may be replaced by the following theorem:
THEOREM 16. 1=1% and 1= (~O~1).

Proor. We have i=(~¢ 0)=[~0(1—1)]=(~0~1)=1%, by
Theorem 3.

THEOREM 17. x3x.=.1.

ProoF. We have x 3x. =.~O(x~x)=.~O 0= .4.

If p and ¢ are propositions, then we have the following theorem :*
If p3qis asserted, then p-3q.=.1.

Lewis’ postulates may therefore be written as follows:

pq 3 qp.=.1,
pg 3 p.=.1,
P =3 pp.=.i,

(ba)r 3 p(gn). = .4,
P33~ (~p). =i,
p3qg.qg3r:3.p3ri=.1,
p.p3¢:3.q¢:.=.1,
Opg 30 p.=.1

The corresponding theorems for classes are obtained by changing the
propositions p, ¢, 7 into x, v, 2, respectively:

I
-

THEOREM 18. xy 3 yx.=.1.

Proor. We have xy 3 yx. =.xy3xy=.¢ by Theorem 17.

* See this Bulletin, vol. 42 (1936), p. 708, Theorem 9.
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THEOREM 19. xy 3 x.=.1.

ProOF. We have xy 3x. =.~O(xy~x)=.~O(0) =.~O 0=.4.
In like manner we may prove Theorems 20-22 below:

THEOREM 20. x 3 xx.=.1.

THEOREM 21. (xy)z3x(yz).=.1.

THEOREM 22. x 3 ~(~x).=.1.

THEOREM 23. x3y.y32:3 .x33:.=.1.

Proor. We have

x3y.y3z:3.63 3.

(x2y)*(y22)*. 3.2 32
=:(x2>y.y2z)*. 3.2 32
=:(xD>y.y22.422)°. 3.4 3 3
=:1(x2y)*(y22)*(x22)°. 3.4 3 3
=:.x3y.y3z.4 32 3.4 33
tx3z.23y.y3z.:3.40 3%

=.1,

where the first five equations can be obtained, respectively, from
Theorem 15, Fy, Theorem 23.1 (below), Fy, and Theorems 4 and 15.
The last equation follows from Theorem 19.

THEOREM 23.1. ¥x>y.yDz:=:xDy.yDdz.xD3.
Proor. We have
x3y.ydzi=:(~x+ xy).(~y + y2)
=i~x~7y+ ~xyz+ xy~y+ xyyz

1
=l~x~y-+ y3.
Then
xDy.yd>z.42z.i=:(~x~7y+ y3).(x22)

=:(~x~7y+ y3).(~ x4+ 22)
=:~x~x~y+ ~axyz+ 0+ xyzz
=i~ax~y+ ~xyz+ xy3
=i~x~Y+ vz

=!x¥D7v.y23,
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by (1) above.
THEOREM 24. x.x3vy:-3.y:.=.4.
Proor. We have
.23 y:3.yi.=.~O (x.2 3 y.~y)
=~ (x~y.x3y)
=.~Oo @@~y ~O(x~y)
=.~%0
=.1,
by Theorem 11 and a definition.
THEOREM 25. O(xy) 3 Ox. =.1.
Proor. By the application of Theorem 25.1 (below),
Oxy) 30 2. =.~0 [0 (23) ~ O «]
=~ [0(8y) ~ O 1~ O (2)]
=~ 0 (~ 0 5.0)
=.~00
= .1,
by definition.
THEOREM 25.1. ~Ox. =:~Ox. ~O(xy).
Proor. We have, using Fs,
~Ox.~O (ay)i=.(1— x)*(1 — xy)>,
=.[(1 =91 — ay)]*
=.(1—x— xy+ xxy)”
=.(1— %)
=.~Ox,
where the first step follows by Theorem 1 and the last by Theorem 2.

5. Theorems corresponding to Lewis’ operations. Lewis’ substitu-
tion can be performed both on propositions and on classes. We con-
sider therefore only adjunction and inference. For this purpose, we
first establish the following two theorems:

THEOREM 26. x.x3y:=1:xy.x-39%.
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ProoF. By Theorem 11 we have

x~y.~O (x~y)i=.0,

or
2(1 — 9).2 3 y:=.0,
or
(x — xy).2 3 y:=.0,
or
(. 3y) — (xy.x3y)=0,

from which we get at once Theorem 26.

THEOREM 27. (1) If i3 x. = .1, then ix=1. (2) Conversely, if ix =1,
then 1 3 x. = .14.

Proor. We obtain, using Theorem 16, F,, and Theorem 26,
x=1"x=(1.1)"x=1"1"y =dix =ixt =1x(t 3 x) =2(s 3 x) =15 =14.

The proof of the converse theorem is the following: We have
i3x.=.~O(G~x)=.~O[i~(ix)]=.~O(i~i)=.~O 0=.i, by
definition.

DEFINITION. We write x, when and only when ix =1.

Thus, we may write x, when x =1 or x =1¢. For example, Theorem
18 is equivalent to |- .xy -3 yx.

We can now prove the theorems corresponding to adjunction and
inference.

THEOREM 28. If x and v, then  (xy).

Proor. We have 2(xy) =4ixy=14xiy=1i=1. Hence by definition,
= (xy).

THEOREM 29. If bx, and - .x3y, then 1.

ProOF. We obtain 1y =4y = (3x) (. x 3 y)y=1xi(x 3 y)y=1ixy(x 3 y)
=4ix(x 3 y) = (ix)i(x 3 y) =44 =1, using Theorem 26. Therefore 7y =1;
hence by definition y.

6. Miscellaneous theorems. We state the following theorems, each
without proof:

THEOREM 30. x 3y.=:7.x3y.
THEOREM 31. If x3y.=.1,and y33.=.1, then x 3 2. =.1.
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THEOREM 32. If x3y.=.tand x3y.-3 .u3v:=.14, then u-3v.
=.4.

THEOREM 33. (1) If x3y.=.4, then .x3y. (2) Conversely, if
-.x3y, then x3y.=.1.

THEOREM 34. (1) If i3 x. = .1, then x. (2) Conversely, if x, then
13x.=.1.

THEOREM 35. If 1 3x.=.1, then x.

7. A relation between Huntington’s “p in 7” and “|p” in this

paper. In this Bulletin (vol. 40 (1934), p. 733) E. V. Huntington es-
tablished the theorem

e <) [(p 39 inT]
from the following definition of (p <q):
©) <q=(@=r719.

It is now my aim to prove the following theorem:
THEOREM 36. [(p3¢) in T|2 (F.p3¢).

PRrOOF OF [(p3¢q) in T'|—(+.p=3¢). By hypothesis, (p3¢) in T.
By (2) and (3), p=pq. Therefore, p3¢.=.p¢3¢q.=.7¢. Thus
~.p3¢q.

PROOF OF (F.p3¢)—[(p3¢) in T]. By (2) and (3) (p=pp)
—[(p3p) in T]. Therefore, (p3 p) in T, that is,

“) tin T.

But by hypothesis, 2.9 3 ¢: = .1. Hence

5) p3q.=.1.

From (4) and (5) we have at once (p3¢) in T.
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