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The stronger result of 3.3 shows that l(r, d\ <jx/>) is of class PL; 
whence 

[l(r,d;<t*$)]2A log l(r, $; <&) 

* agâha3-âk(g - h)2(j - k)2 

..*"*-! (g + * + 1)0' + * + 1)(* + * + 1)(* + 7 + 1) 
. fg-\-h+j-hkgi(g—h-}-j—k) > Q^ 

On the other hand, it can be shown directly, by an extension of the 
above identities, that (17) is positive definite. 
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1. Introduction. A considerable amount of attention has been de­
voted to integrals of fractional order, both in regard to their applica­
tions and to the conditions for their existence.* We shall denote the 
fractional integral of order a by 

(1) TUf{t) = — - f (/ - v)°-y(v)dv, a>0,t>T, 

and it is the purpose of this paper to give some formulas which may 
be of use in manipulating these integrals. We shall prove that under 
certain conditions the following relations hold : 

(2) r^«5a._rw_f->w 
JT tk+a T(k + a)JT tk 

(3) f e-kl
TIt

af(t)dt = k~" \ e-ktf(t)dt, a > 0, 
J rp J rp 

cos ktTItaf(t)dt = k-° I cos (kt + va/2)f(t)dt, 0 < a < 1, 
y « / y 

and (4) holds when cosine is replaced by sine. As an application we 

* A bibliography is given by H. T. Davis, Application of fractional operators to 
functional equations, American Journal of Mathematics, vol. 49 (1927), pp. 123-142. 
See also J. D. Tamarkin, On integrahle solutions of Abel's integral equation, Annals 
of Mathematics, (2), vol. 31 (1930), pp. 219-229. 
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shall evaluate by a new method certain well known integrals involv­
ing Bessel functions. It will be noticed that when a=l the formulas 
(2) and (3) agree with the results of integrating by parts in the ordi­
nary way ; they may therefore be regarded as extensions to fractional 
orders of integration of the familiar formula for integration by parts. 
The vanishing of the integrated term leads to some general theorems 
which are stated as corollaries to Theorem 1 below. 

2. The proofs of the above formulas. The first formula may be 
stated in a theorem as follows : 

THEOREM 1. Assume T^0,a>0, k>0. Then 

(s) fï!W»«__EW_rm*, 
JT tk+« T(k + a)JT tk 

provided either that the right-hand side exists in the Lebesgue sense, or 
that f (t) is continuous and the right-hand side convergent, not necessarily 
absolutely. 

PROOF. We have 

/

%,iTltaf{t) r* dt rl 

T tk+a JT tk+aJT 

J T J v 

* (t ~ v)œ : - l 

= f lf(v)dv [ V w ( i - v/ty-tdt 

— dv uk~l{\ - uY~Hu, 
T Vk J v/li 

on setting v/t — u. If the right-hand side of (5) is absolutely conver­
gent, we may let JU become infinite, justifying the process by inverting 
the order of integration, taking the positive and negative parts of f(v) 
separately, and using the theorem of monotonie convergence;! our 
theorem then follows on evaluation of the u integral. Otherwise a 
more elaborate process is necessary. We integrate by parts, setting 

x — dv =F(v). 
T Vk 

* The inversion is easily justified. See, for example, E. C. Titchmarsh, The 
Theory of Functions, p. 398, example 25. 

f Titchmarsh, loc. cit., p. 346. 
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This gives 

\F(v) f uk~l(l - u)«-Hu\ -\ eF(v)(y/ix)k~l(\ - v^Y~ldv. 
L J v/n AT y> J T 

The integrated term vanishes at both limits; and on the assumption 
that F(v) approaches a limit, say V, as v—* <*>, we shall now show that 
the last integral approaches 

r(fe)r(q) 

r(* + a) 

as fji~>oo. Write F(v) = V+h(v), where \h(v)\ <e if ZJ>Z>0, and in any 
case | h(v) \ <A (A denoting a constant, not necessarily the same each 
time it is used). We divide the integral into four parts as follows. In 
the first place, 

I f 1 V /•" 
— I F O / M ) * - 1 ^ - v/v)a~ldv = I vk~l(ix - v)"-1 

V 

dv 

r(ft)r(«) 

r(£ + a) 

Also, if fi>T, 

\ rT V rT A 

— V(v/fx)k~l(l - v/nY-Hv = — ^ ( l - v/n)«-ldv < — 
M Jo /JLk J o M* 

Supposing further that ju- >^o > T, we write 

1 fvo, A rVQ A 
— I I h{v) I (v/n)k-l(l - v/tx)a~ldv < — I « ^ ( l - v/ii)«-ldv < — 
V J T jJLk J T M^ 

and finally, 

r(*)r(«) 
*(») I (v/fx)k~l(l - v/ix)«-ldv < e 

r(fe + a) 

The theorem now follows on combining the results of the four pre­
ceding equations. 

COROLLARY 1. If the integral 
00 m 

J T V 

converges, then 

dv 
k 
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1 r» 
— I f(v)dv-

as ju—> co , 

For, if F(v) denotes an indefinite integral of f(v), we have, on in­
tegrating by parts in the usual way, 

JT vk L vk
 AT JT vk+1 

Comparing this with the result of the above theorem (with a = 1), we 
see that the integrated term must vanish at ju = oo, which proves the 
corollary. That the converse proposition need not be true may be 
seen by taking f(v) = (log v)"1, k = l. 

This corollary leads us to the following more general result: 

COROLLARY 2. If the integral 

I g(v)f(v)dv 
J rp 

convergesy then 

as /A—» oo, the function g(v) being any f unction that tends monotonically 
to zero as v—+ <*>. 

Suppose first that g(v) is monotonically decreasing in the strict 
sense, and set g(v) =u~x. Let the inverse relation be v = G(u), and sup­
pose further that G(u) is the integral of a function G'(u) ; then by the 
conditions of this corollary the integral 

f u~1f{G(u)}G,(u)du 
*I 1/ n(T\ 

exists.* Hence by Corollary 1 (with k = l) we have 

M"1 f f{G(u)}G'(u)du->0. 
J i /oen V0(T) 

Changing the variable back to v, we have 

<? Ox) 

f(v)dv-+0, 
T 

Titchmarsh, loc. cit., p. 377. 
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or, what is the same thing, 

as required. Next, suppose that g{v) is a step function tending to zero. 
Evidently we may replace g{v) by a steadily decreasing function (in 
the strict sense) g(v), such that 

I g(v)f(v)dv - I g(v)f(v)dv 
| %J y « / y 

< e 

for any value of e>0 , and at the same time, 

lim g(v)/g(v) = 1. 
V—->oo 

The corollary will then be true for g(v) and therefore for g(v). Finally, 
let g(v) be any function tending monotonically to zero, not neces­
sarily in the strict sense. Then we can replace g(v) by a step function 
and this in turn by a steadily decreasing function in the strict sense. 
The corollary now follows as before. 

COROLLARY 3.* Let h, h, • • • be a sequence tending monotonically 
to zero, and let U\, u%, • • • be any sequence such that ^2n=itnUn exists. 
Then 

m 

tm22un—>0 

For each sum may be represented as the integral of a step function. 
The result then follows from Corollary 2. 

THEOREM 2. Assumea>0, k>0. Then 

f e-kt
TItaf(t)dt = *-« f e~ktf(t)dt, 

%J rp J rp 

provided either that the right-hand side exists in the Lebesgue sense, or 
that f (t) is continuous and the right-hand side convergent, not necessarily 
absolutely. 

PROOF. We have the following relations: 

* A particular case of this corollary, with /„ = n~k, is given by Pólya and Szegö, 
Aufgaben und Lehrsatze, vol. 1, part 1, exercise 75. 
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r (a ) J e~kt
TItaf(t)dt = \\-ktdt\ (t - vy-^dv 

%/ rp J rp %J rp 

f(v)dv j erkt(t - vY~ldt 
T J v 

/(fl)dz; I e~k(u+v)ua-ldu 
T J 0 

e~kvf(v)dv I e~kuua~xdu 
T J 0 

—>r(a)&-<* I e~kvf(v)dv, 
J rp 

as /x—» co, the process being justified as in Theorem 1. This proves the 
theorem. 

THEOREM 3. Assume k>0, 0 < a < l . Then 

/
cos ktTItaf(t)dt = kr« I cos (JW + va/2)f(t)dt, 

provided that either the right-hand side exists in the Lebesgue sense or 
ƒ(/) is continuous and the right-hand side convergent, not necessarily ab­
solutely. The same is true when the cosine is replaced by sine throughout. 

PROOF. We have 

cos ktTIt
af(t)dt = I cos ktdt I (/ - v)a-lf(v)dv 

rp %J rp J rp 

/

• V /» fi 

f(v)dv I (t - v)a~l cos ktdt 
T J v 

ƒ» n /» k{n—v) 

f(v)dv I ua~l cos (u + kv)du 
T «^ 0 

= k~a < I jf(fl) cos kv dv I ^ a _ 1 cos u du 
\ J T J 0 

f(v) sin &z; dz; I ua~l s i n u d u \ 
T J o ) 

-» r(a)fe-« j cos O + Ta/2)f(v)dv, 
J rp 
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as fx—» oo , the process being justified as in Theorem 1. The correspond­
ing theorem, with cosine replaced by sine, may be proved in a similar 
way. 

It will be noticed that the above proof breaks down when a = l « 
If indeed the theorem were true for a= 1, we should have as a corol­
lary that 

cos kix I f(t)dt->0, 
J J» 

which is clearly not true in general. 

3. Applications of the theorems. We now apply these theorems to 
the evaluation of the integrals* 

(6) I x-n~mJn(ax)dxy n > - 1/2, 0 <m < lf 
J o 

(7) f e-kx2xn+1Jn(ax)dx, n > - 1/2, * > 0, 
J o 

(8) 

ƒ.' 

ƒ." 

xn+1 cos kx2Jn(ax)dx, - 1/2 < n < 1/2, k > 0, 

xn+1 sin kx2Jn(ax)dx, - 1/2 < n < 1/2, k > 0. 
o 

It is found that Bessel functions lend themselves readily to the 
methods of the fractional calculus. W. O. Pennellf has shown that 

(9) Jniat1'2) = (a/2y-lir-l'H-ni\lrm sin a/1'2. 

This was proved by expanding sin at112 in a power series and in­
tegrating fractionally term by term. It holds for all values of n, posi­
tive and negative, provided we write as usual I-<x==DpIp~a

1 p being 
an integer such that p>a^p—1^0, and Dp denoting repeated differ­
entiation in the usual sense. If n> —1/2, we may also derive (9) by 
taking Poisson's integral 

2(at/2)n 

T(n + l / 2 ) r ( l / 2 ) , 

and setting tu = v112. This gives 

* An evaluation of integrals (6) and (7) is to be found in Watson, Bessel Func­
tions, chap. 13, pp. 393-394; or see Gray and Mathews, Bessel Functions, 1st edition, 
formulas (163) and (162), or 2d edition, formula (8) on page 66 and formula (19) on 
page 71. In each of these books references to the original papers of Weber and others 
are given. 

f This Bulletin, vol. 38 (1932), pp. 115-122. 

Jn(at) = "v""7 "J I (1 - O n ~ 1 / 2 cos atu du, 
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^ /» t 

Jn(at) = ^ - ^ (/2 - »)»-!/*-
(a*/2)w f * cos av112 

t2nT(n + 1 / 2 ) I V 1 / ? W O 7,1/2 

whence, by changing / into /1/2, we obtain 

(10) Jn(atl>2) = (a/2)-7T-1 / 2r^Vf+ 1 / 2(r1 /2 cos a/1/2), 

a formula equivalent to (9). It is now easy to evaluate the integrals 
under consideration. In the first place, we have 

Jn{ax) 7 I f 0 0 Jniat1'2) 
dt 

r°° Jn(ax) = 1 Z-00^ 

J o ocn+m 2 J o *w /2+W/2+1/2 

cos a/1/2 
1 f 1 cos at1 

= -(<Z/2)"7T-1/2 o/*W+1/2 * 

2 J 0 ^+™/2+1'2 t1/2 

by (10). Applying Theorem 1, we find that this is equal to 
1 T(m/2) r °° cos at1'2 1 T(m/2) r 
2 Yin + m/2 + 1/2) J 0 

/2 
•<ft 

r (» + m/2 + 1/2) J o *m/2+1 

Y (m/2) Z*00 cos ax 
= (a/iy^2 ^—— dx 

T(n + tn/2 + 1/2) J 0 *m 

r(m/2) 
= (a/2)nT~112 a ^ r l l - ra) sin wm/2. 

T(n + m/2 + 1/2) 
Simplifying by routine methods, we obtain finally 

r °° Jn(ax) T(l/2 - m/2) 

J o xn+m T(n + m/2 + 1/2) 

The same method may be applied to the integral (7). We have 

/

i r00 

e-^x^1Jn{ax)dx = - I e-kttn'2Jn(at1/2)dt 
o 2 J o 

i r00 

= -(a/2)nTT-112 I e-kt
0It

n+ll2(t~112 cos a/1/2)*//, 
2 J o 

by (10). Applying Theorem 2 we find that this is equal to 

1 r00 

-(a/2)w7r-1/2£-<w+1/2) I e-kH~^2 cos a/1/2^ 
2 J o 

= (a/2)w7r-1/2£-<w+1/2> I e~kx2cosaxdx 
J o 
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= (a/2)n7r-~ll2k-(n+1/2)e~a'2'*k f e~k*Ux, 
J 0 

as is readily proved by a contour integration method.* Hence, finally, 

r e-
k*2xn+1Jn(ax)d% = (2k)-n~lane-a2,4k. 

Similarly, by using Theorem 3, we find that 

J xn+1 cos kx2Jn(ax)dx 
0 

= 21/2(2&)-"-V*{cos (wn/2+7r/4~a2/4k)-sm (wn/2+T/4-a2/4rk)\ 

and that 

/
xn+\ s m kx2Jn(ax)dx 

0 

= 21/2(2£)-w-V*{cos (<jrn/2+Tr/4-a2/U) + sm (>im/2+Tr/4-a2/4:k)}, 

provided —l/2<n<l/2. These examples will serve to indicate some 
of the uses of the theorems given above. 

ACADIA UNIVERSITY 

* Whittaker and Watson, Modern Analysis, 4th edition, p. 114, example 3. 


