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while from (5), for G = l and H = w, we have 

ƒ ƒ A2w(Q)dSQ = 0. 

THEOREM 3. If (du/dr) = C9£0 on the open set 12 of the sphere 5, and 
if 2 is a domain containing S and its interior, it is in no case possible to 
extend u harmonically across ti into the portion of 2 exterior to S. 
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Suppose we are given a metrisablef space E. Let M be the class 
of all allowable metrics on E. Let Mb, Mcy MB, and Mc be, respec­
tively, the classes of metrics in which the space is bounded, complete, 
totally bounded, and totally complete. The purpose of this note is to 
obtain systematically all possible theorems which state the equiva­
lence of some topological property of E (such as compactness, or 
separability) to the existence or non-existence of metrics having some 
of the above properties. An example is the well known theorem: 

In order that E be compact it is necessary and sufficient that it be 
complete in every allowable metric. 

The problem may also be stated as follows : Using the four defini­
tions as principles of classification and noting the inclusions Mb 3 MB 
-D MbMc and Mc 3 Mc => MCMB> we may represent M as the sum of 

seven disjoint sets : (1) M- Mb - Me, (2) Mb-MB- MbMCJ (3) Mc- Mc 

* Presented to the Society, December 28, 1937. 
f A topological space will be called metrisable if it is possible to define its continu­

ity properties by means of a metric. Any metric which serves this purpose will be 
called allowable, and the space in conjunction with such a metric will be called a 
metric space. A metric space will be called bounded if there is a finite upper bound to 
the distance between any pair of its points. I t will be called complete if every Cauchy 
sequence converges. It will be called totally bounded if it is, for every positive number 
e, the sum of a finite number of sets of diameter less than e. It will be called totally 
complete if every bounded set is compact. See C. Kuratowski, Topologie I, pp. 82, 87, 
91,196. 
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-MbMc, (4) MbMc-McMB-MbMc, (5) MB-MCMB, (6) Mc 

— MbMc, and (7) MBMc> These sets generate a Boolean algebra with 
27 elements. Any relation among these elements (which is sometimes, 
but not identically, satisfied) corresponds to some topological prop­
erty of JE, and the problem is to determine this correspondence. 

Now, any such relation among the elements may be exhibited as 
a proposition constructed by the logical operations of conjunction, 
disjunction, and negation from the seven propositions obtained by 
setting each of the generating sets equal to the null set. Moreover, 
by the use of DeMorgan's Law, any such proposition may be ex­
pressed as a disjunction of conjunctions, the elements of the latter 
being chosen from the seven original propositions and their negations. 
The first step, then, is to obtain the topological equivalents of the 214 

conjunctions. Fortunately, only forty-five need be considered, the re­
mainder falling into three classes: (a) those which are never satisfied, 
(b) those which are always satisfied, and (c) those of the form PQ 
where P is one of the forty-five and implies Q. It will be readily seen 
that when the topological equivalents of the above forty-five conjunc­
tions are known, and when it is known that every other conjunction 
falls into one of the above three classes, it will be a rather easy matter 
to determine the topological equivalent of any given proposition of 
the type considered, or to determine whether or not such a proposi­
tion which is equivalent to a given property exists. 

The topological part of the solution is contained in the following 
seven theorems and their converses. Proofs are given for the first 
three theorems. The proofs of the four remaining theorems, as well 
as of the seven converses, are obvious. 

THEOREM 1. If E is either bounded or complete in every allowable 
metric, then E is compact. 

PROOF. Suppose that E is not compact, and let (at) be a divergent 
sequence of points of E. Let R be a ray (half-line) with vertex 0, 
and let bïn be the point of R whose distance from 0 is 1/n, and bin-\ 
the point of R whose distance from 0 is n + 1. The subset of E which 
consists of the points ai is closed and is homeomorphic to the subset 
of R which consists of the points b{. In fact the correspondence in 
which corresponding points have identical subscripts is a homeo-
morphism. Hence* there exists an allowable metric for E such that 
this correspondence is an isometry. But in such a metric, E is neither 
bounded nor complete, since the set whose elements are the points 

* See F. Hausdorff, Erweiterung einer Homöomorphie, Fundamenta Mathemat ica l 
vol. 16 (1930), pp. 352-360. 
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a2t-i is not bounded, while the sequence (a2i) is a Cauchy sequence 
which does not converge to any point of E. 

THEOREM 2. If E is either totally bounded or complete in every allow­
able metric in which it is bounded, then E is compact. 

PROOF. Suppose that E is not compact, and let (a») be a divergent 
sequence of points of E. Let R' be a metric space with points &», 
(i = l, 2, • • • ), and a metric defined as follows: The set consisting 
of the points b2n is isometric to the similarly named point set in the 
preceding proof. The distance between any two points b2n-\ and &2m-i 
is zero or one according as n is or is not equal to m. The distance be­
tween b2n and b2m-i, in either order, is (2n — l)/2n. The triangle axiom 
is easily verified. As in the preceding proof there exists an allowable 
metric for E such that the correspondence in which the point a* is 
associated with the point b{ is an isometry. From this metric a new 
metric can be obtained, by the usual transformation x' =x/(l+x), 
in which the space is bounded. But in this metric, E is neither totally 
bounded nor complete. For the set whose elements are the points 
a2i-i is not totally bounded, while the sequence (a2i) is a Cauchy 
sequence which does not converge to any point of E. 

THEOREM 3. If E allows a metric in which it is complete, and if E is 
either totally complete or bounded in every such metric, then E is compact. 

PROOF. Suppose that E is not compact, and let (a^ be a divergent 
sequence of points of E. Choose a metric for E as in the proof of 
Theorem 1. There exists* a metric in which E is complete such that 
the distance in it of any two points of E differs by at most one from 
the distance assigned to the two points by the metric of Theorem 1. 
But in this (complete) metric, E is neither totally complete nor 
bounded, for the set whose elements are the points a2{ has a diameter 
at most equal to two but is not compact, while the set whose ele­
ments are the points a2i-i is not bounded. 

THEOREM 4. If E allows a metric in which it is bounded and com-
plete, and if E is either totally bounded or totally complete in at least one 
such metric, then E is compact. 

THEOREM 5. If E allows a metric in which it is totally bounded, and 
if Eis complete in every such metric, then E is compact. 

THEOREM 6. If E allows a metric in which it is totally complete, and 
if E is bounded in at least one such metric, then E is compact. 

* See C. Kuratowski, Topologie I, p. 200. 
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THEOREM 7. If E does not allow a metric in which it is both totally 
bounded and totally complete, then E is not compact. 

From these theorems together with the metric characterizations 
of separable spaces,* of absolute GVs, f and of locally compact, separa­
ble spaces % it is now possible to determine the topological equiva­
lents of the seven propositions mentioned above and of their nega­
tions. 

1. ^.M-Mb-Mc = 0 . = .E is compact. 
2. == .Mb-MB-MbMc = 0 , = .Eis compact. 
3. = .Mc — Mc — MbMc = 0 . = .E is compact or not an absolute 

Gs. 
4. = .MbMc — MCMB — MhMo = 0 . = .E is compact or not an absolute 

Gt. 
5. = . MB — MCMB = 0 . = .E is compact or not separable. 
6. = . Mc — MbMc = 0 . = .E is compact or not separable or 

not locally compact. 
7. = . MBMc = 0 . = .E is not compact. 

It is seen that 1. = . 2. = . — 7 and that 3 . = .4. Consequently, of 
the thirty-one conjunctions which contain two or more elements, only 
the eleven which can be built from 1, 3, 5, 6, and their negations need 
be listed. These are listed below, with their topological equivalents. 

3 • 5 . = .E is compact or not an absolute Gi and is not separable. 
3 • — 1. = .E is not an absolute Gs. 
3 • — 5. = . E is separable and not an absolute Gz. 
S—\. = .Eis not separable. 
5 • — 3 . s= .E is an absolute Gt and is not separable. 
6—l.^.Eis not separable or not locally compact. 
6 • — 3 . = . E is an absolute Gs and is either not separable or not 

locally compact. 
6 • — 5. = . E is separable and not locally compact. 

— 3-—S.^.Eis separable and an absolute Gg and is not compact. 
3 • 5 • — 1. = . E is not an absolute Gs and is not separable. 

6 • — 3 • — 5 . = .E is separable and an absolute Gs and is not locally com­
pact. 

The completion of this list makes it easily possible to translate any 
proposition of the class considered into more familiar topological 

* See Kuratowski, loc. cit., p. 91. 
t See Kuratowski, loc. cit., p. 215. 
{ See H. E. Vaughan, On locally compact metrisable spaces, this Bulletin, vol. 43 

(1937), pp. 532-535. 
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terms. The inverse problem of determining a proposition equivalent 
to a given topological condition, or showing that one does not exist, 
may be solved as follows : It will be seen that every condition which 
appears on the right side of one of the above equivalences is con­
structed, by means of the three elementary logical operations, from 
the four propositions: 

A : E is compact. 
B: E is locally compact and separable. 
C: E is separable. 
D: E is an absolute Gt>. 

Furthermore, these four may themselves be obtained from the con­
ditions listed by means of the logical operations. It follows that the 
topological conditions which may be stated in terms of the existence 
or non-existence of metrics of the kinds considered are exactly those 
which can be obtained from the above four by conjunction, disjunc­
tion, and negation. To save space only the fourteen conditions involv­
ing A, B, and C, but not J9, will be stated. The verification, by enu­
meration, of the fact that these are all offers no difficulty. 

A : E is compact. 
B: E is locally compact and separable. 
C: E is separable. 

E is not compact. 
E is not locally compact or not separable. 
E is not separable. 
E is locally compact and separable and not compact. 
E is separable and not compact. 

-B: E is separable and not locally compact. 
E is compact or not locally compact or not separable. 
E is compact or not separable. 
E is compact or separable and not locally compact. 
E is locally compact or not separable. 
E is locally compact and not compact or not separable. 

The proposed problem may now be considered as solved since any 
equivalence of the kind described in the first paragraph can now be 
constructed easily, starting with either the metric or the topological 
condition. I t is now also possible to make statements like the follow­
ing: There is no such equivalence in which the topological condition 
is local compactness. For the condition UE is locally compact" does 
not appear in the preceding list. 
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