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0P;
(14) - = A,;.
do

This system, together with the initial conditions, is satisfied by
P;=0, (i=1, - .., k). Hence, on account of the uniqueness of
the solution of (14) with given initial values, we conclude that
P;=0, and the proof is complete.
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1. Introduction. A function ¢(x) with domain in a linear space
E and range in the set R of real numbers is called a functional,
and ¢(x) is called linear, if

(1) g(ax + by) = aq(x) + bq(y), ®,yeE; a,beR.

We call a functional 7(x) an 7-function (over E) if there exists a
linear functional f(x) with

2) flx) £ r(=), xeE.
Using a notation of Banacht we call a functional p(x) a p-func-
tion if

3) p(tx) = tp(x), =0, xeE,
4) p(x+y) = p(@) + 2(9), x,yeB.

A fundamental theorem of Banach (loc. cit., p. 29) can be
stated as follows:

THEOREM (Banach). Eack p-function is an r-function.

In some problems} involving existence of linear functionals
fi(x) having prescribed properties, there appears a functional
g(x) with the following significance: There exists a linear func-
tional f1 having the requisite properties if and only if there exists

* Presented to the Society, September 8, 1937.
t S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 28.
1 The author intends to discuss these problems at some future time.
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a linear functional f with f(x) <¢(x), that is, if and only if g(x)
is an r-function. If ¢(x) can be shown to be a p-function, the
problem is solved by Banach’s theorem; if ¢(x) is not a p-func-
tion or one is unable to decide whether g(x) is a p-function,
Banach’s theorem cannot be applied. These considerations, and
the fact that it is easy to give examples of 7-functions which are
not g-functions, lead one to desire an analytic characterization
of r-functions. In §2 we give such a characterization, and in
§3 we give some closely related theorems.

2. Characterization of r-functions. We prove now the theorem:

THEOREM 1. In order that a functional r(x) defined over E
may be an r-function, it s necessary and sufficient that

) elb, 3T

n,t>0;225=0 k=1 t

In (5), D x: stands for the sum x;4 - - - +x, of elements
xreE. To prove necessity, let r(x) be an r-function and let
f(x) be a linear functional with f(x) <7(x) for all xeE. Then if

n, by by - o, ta>0and D _xy=0, we have
(6) fxx) = fGar)/te < r(tuwn)/br,
so that

(M 0=£0) = f(3 w) = 2 flwx) £ 2 r(tazn)/t,

and (5) follows.
To prove sufficiency, let (5) hold and define the functional
(" (x) by the formula

®) P = glp. 3 L

n,t6>0;20k=2 k=1 te

) xeE.

To show that p(” (x) exists (is finite) for each xeE, we observe
that if #, #, -+, t,>0 and D x,=w, then xi+ - - +x,
4+ (—x)=0 and it follows from (5) that

i r(txr) n r(— x) >0,
k=1 tr 1

and hence
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—_ r(-—— x) = i r(thk)

k=1 tr

)

which implies that —7(—x) £ (x). If in the sum in the right
member of (8) we put n=1, {=1, x;=x, we obtain p(" (x) =7(x).
Therefore

) — (=) 2 p0(x) = r(x), veE.

We prove next that p(” (x) is a p-function. If xeE and ¢>0,
then

L r(thk)

g.lb. X

n,t5>0;20=1T f=1 t

irwmmmn

It

p(r)(tx)

=¢ g.l.b.
n, 0 t>0;2(2p/t) =2 k=1 iy,
Ior(u
=4 glb. X ( k)ik—) = 1p(x),

nup>032Yk=2 k=1 Ug

so that " (#x) =tp(” (x) for ¢>0. Substitution of t=2, x=0
in this formula gives p(" (0) =0. Therefore

(10) pN(tx) = 1p™(w), { = 0; xeE.

To prove that

(11) p(x 4+ 3) = p(x) + 20, x,yeE,
let x,y¢ E be fixed and let e=0. Choose m, #, - - - , ¢»>0 and
X1, *  +, ¥ meE such that)_x;=x and

m

2 r(tiw)/t; < p(x) + ¢

=1

and choose %, %1, -+, u,>0 and y;, - -, y.eE such that
2 yi=y and

n

> r(uryr)/ur < pO(9) + €.

k=1

Since m+n, i, upy>0and x;+ - - - Fxutyi+ - - Fya=x+4y,
it follows from the definition of ¢ (x+y) that
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SO+ 9) Zm: r(ti%;) " z": r(uryr) < () + pI(3) + 2.

i=1 7 k=1 Uk

The arbitrariness of €>0 gives (11). Thus (" (x) is a p-function
and it follows from Banach’s theorem that there exists a linear
functional f(x) with f(x) <" (x). Using (9), we obtain
f(x) =r(x); thus 7(x) is an r-function and Theorem 1 is proved.

3. Significance of p¢” (x). From Theorem 1 and its proof,
we obtain the first part of our next theorem.

THEOREM 2. If r(x) is an r-function, then the functional
P (x) defined by

(12) pO() = glb, 3 TG

n,t>03Z08=2 k=1 i

) xeE ,

is @ p-function with

(13) —r(—2) = — pP(x) = pT(x) = (), xeE;
moreover if p(x) is a p-function with p(x) <r(x) for all xeE, then
(14) = p(— %) = — p(— %) = p(x) = p(w), vekE.

In establishing (13), we use (9) and the fact that, for any
p-function, 0 =p(0) = p(x —x) < p(x) +p(—x) and hence — p(—x)
=p(x) for all xeE. If p(x)=r(x); n, 4, -+, t,>0; and

xp=x; then

p(x) < g?(xk) = ;?(thk)/tk = i r(txe)/te

and p(x) £p” (x) follows. The remaining inequalities in (14)
follow easily, and Theorem 2 is proved. The gist of Theorem 2
is that p(”(x) is the “greatest” p-function p(x) with
p(x) =7(x). In particular, if 7(x) is a p-function, then (7 (x)
=r(x).

Since each linear functional f(x) is a p-function, Theorem 2
implies the following theorem:

THEOREM 3. If r(x) is an r-function and f(x) is ¢ linear func-
ttonal with f(x) Sr(x), then

(15) —r(=x) = — p(—=x) = f(x) £ p(x) = r(x), xeE.
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It thus appears that the class of linear functionals f(x) for
which f(x) =" (x) is identical with the class of linear func-
tionals f(x) for which f(x) =7(x).

4. Conclusion. The functionals ¢(x) mentioned in the intro-
duction often have the property g(tx) =tq(x) for =0, and xeE.
Hence it is of interest to note that if

(16) r(tx) = tr(x), 1= 0, xeE,

then the criterion (5) that 7(x) be an r-function reduces to

n

17 g.l.b. X r(xx) =0,

n>0;22=0 k=1

and that formula (12) for ¢ (x) reduces to

n

(18) p(x) = g.l.b. D r(wx), xeE.

n>03Z0k= k=1
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