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T H E RESULTANT MATRIX OF TWO POLYNOMIALS* 

BY M. M. FLOOD 

1. Introduction. Frobeniusf has shown that if P is a matrix 
whose characteristic function is P(x) and if Po(x) is a second 
polynomial, then their resultant is the determinant of the matrix 
Po(P). In particular, if P is non-derogatory, J the present au­
thor § has shown that the degree of the highest common factor 
of P(x) and Po(x) is the same as the nullity || of PQ(P). 

In this paper the matrix P is taken to be the companion 
matrix 1f of P(x), and it is shown that all the remainders in the 
euclidean algorithm for P(x) and PQ(X) can easily be found from 
the "resultant matrix" PQ(P). The proof is strictly rational and 
quite elementary. Finally, the results are applied to a numeri­
cal example. 

2. The Algorithm. The euclidean algorithm for the polyno­
mials PQ(X) and Pi(x) = P(x) may be written in the form 

(1) iV i (x ) = Rk(x)Pk(x) - Pk+i(x), (k = 1, 2, • • • , r ) , 

where Pr+i(x) = 0, and the degree of Pk+i(x) is less than the de­
gree of Pk(x). Set Si(x) = 1, S2(x) =Ri(x), P-i(x) = 0, P-2(*) = 1, 
and define polynomials Sk(x) and P-k{x) by the relations 

Sk+i(x) = Rk(x)Sk(x) - Sk-i(x) \ 
V , (k = 2, 3, • • • , r ) . 

Pu-(k+l)(x) = Rk(x)P-k(x) — P_ (A;_l)(x) ) 

A simple induction** now yields the identities 

(2) Pk(x) = Sk(x)P1(x) -P_fc(s)P0(s), (k = 1, 2, > • • , r + 1). 

* Presented to the Society, February 29, 1936. A special case of the prin­
cipal result of this paper was considered by the present author in a paper hav­
ing the same title and published in the American Mathematical Monthly, 
vol. 44 (1937), p. 309. 

t Frobenius, Journal für Mathematik, vol. 84 (1878), p. 11. 
Î Sylvester has called a matrix "non-derogatory" when its characteristic 

function and minimum function are the same. 
§ American Mathematical Monthly, vol. 43 (1936), p. 562. 
|| The "nullity" of a matrix is the difference between its order and rank 
1f The "companion matrix" of P(x) is the matrix Pi defined in §3. 
** Netto, Vorlesungen ilber Algebra, §62. 
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For convenience, set 

( l i l = 0 , 1, 2, . . . , r + l ) 

and suppose that po^pi and that P\Pl = 1. If Rk(x) is of degree 
rk = r-.jc, then 

rk — ^fc-i — pk — P-(k+i) — p-k, ( | & | = 2, 3, • • • , r), 

and it follows that 

p-k = pi- pk-u (I k\ = 2, 3, • • • , r + 1). 

The euclidean algorithm for the polynomials Po(#)=(?o(ff) 
and Pi(#) = QiO*0 written in the customary form would be 

Qk-i(x) = ^(^)Ofc(^) + 0/b+iO), (& = 1, 2, • • • , r), 

where Qr+i(x) = 0, and the degree of Qk+i(x) is less than the de­
gree of Qk(x). It is possible to pass easily from one form of the 
algorithm to the other with the help of the relations 

Qk(x) = (- l)*w*Pk(x)' 

Rk(x) = ( - l ) ^ 1 * * ^ ) 

3. The Companion Matrix. The companion matrix of Pi{x) is 
the matrix 

\ — P\ Pl-1 ~ P l Pl-2 —Pi Pl-Z ' ' ' —Pl2 —Pll —PlO 

1 0 0 • • • 0 0 0 

0 1 0 • • • 0 0 0 
P l = 

So if n is a non-negative integer less than pu then the last pi — n 
rows of Px

n+l are the same as the first pi — n rows of Pi itself. 
Hence, if V}- is the matrix formed from the last rj rows of P,-(Pi), 
and if 2^\j\ £r, then 

(* = 0, 1, 2, . . . , r + l ) . 
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This matrix has pi columns of which the first p-3- are zero, of 
course. 

4. The Resultant Matrix. If Pi is substituted for x in the iden­
tity (2), since Pi (Pi) =0 , it follows that 

Pt(Pi) = - P_*(Pi)Po(Pi), (* = 2, 3, • • • , r). 

Now if W= — P0(Pi) , then the last rk rows of this equation may 
be written in the form 

Vk = V„kW, (k = 2, 3, •• • , r ) . 

Hence if T is defined by the first of the following equations, 
TW will have the value given by the second of these equations: 

T = 

F_2 

TW = 

Vr 

V» 

Let Mjk(-W) denote the minor of order j made up from the 
last j rows, first j — 1 columns, and (pi—k)th column of Po(Pi) 
for i = l, 2, • • • , pi, and & = 0, 1, 2, • • • , pi — j . Of course 
Mjk(-W) =0 if j>pi — pr since the nullity of W is pr. Now set 

J f , ( - IF, x) = Ê Jfy*(- W0*S ( i = 1,2, . . • , # i ) . 

Because of the triangular form of P, it follows that 

(3) M&TW, x) = (- l ) ' fnJ(P_, 1 )J
!M 1{- W, x), 

L fc=2 J 

0' = 1, 2, ' • • , Pi - Pr), 

where ck = (P-kp_k)
rk and t and 5 are determined by the in­

equality 0 ^ t =j—ps < r8. 
An inspection of TW shows that Mj(TW, x)=0 unless j is 

either p-(8+i) or p~s + l for some value of s such that 2^s^r. 
In these exceptional cases, it follows that 

M, 
-(«+!) 

(TW, x) = ( - I ) " ] ! ohPs(x)/Psp, 

Mp_,+i(TW, x) = ( - iye-x+P-s J I CkPs(x)/c 

,0=2,3 , •• • , / ) , 
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where <Tk denotes the sum of the products of the integers 
^2, ?s, - • • ,fk taken two at a time, and <7i = o-2 = 0. With the help 
of (3) these relations yield 

P.(x) = ( - l)"+*-<«»P.J I I c-k/c^Mp_{s+l){-W, x) 
, v L fc=2 J 
(4) 

p.(x) = (-iy-i+iP-sp_Xcs/c-s)\ n u/Jtf , - ,+i(- w » 
L u-i J 

(* = 2, 3, • • • , r), 

which shows that the remainders in the euclidean algorithm (1) 
are proportional to the non-zero distinct polynomials in the se­
quence Mi(— W, x), M2(— W, * ) , - • • , MP1(—W, x), and the 
factors of proportionality are independent of x. 

Equations (4) may also be written in the equivalent form 

(5) Q8(x) = A8Mp_(s+l)(- W, x) = B8MP_S+1(- W, x), 

(* = 2 ,3 , . . . , r ) , 

where A8 and Bs are constants independent of x and are given 
by the relations 

A„ = ( - i ) ^ w + . ( H ) / ! ? | ? i ] ] M / C t 

(6) 

5, = ( - i)'-<+i+'<-i>«p_P_.(c.A_) n C-*A» 
/fe=2 

(̂  = 2 , 3 , . - . , r ) . 

Expressions equivalent to (4) and (6) would be obtained from 
them if <r5 were replaced by q8=n8(n8 — l)/2, where n8 denotes 
the number of odd integers in the sequence r2, rZl • • • , r8. 

5. 77^ Constants A8 and B8. For many applications, it is only 
necessary to know the remainders in the algorithm to within 
positive factors of proportionality. For example, in order to find 
the number of real zeros of a polynomial P0(x) within a given 
interval, it is sufficient to know the Sturm functions of Po(x) 
except for possible positive factors. So it is desirable to deter­
mine the signs of A8 and B8 in order that the resultant matrix 
of PQ(X) and P0 ' (x) may be used to determine the Sturm func­
tions Pk(x) of PQ(X) for k = 0, 1, • • • , r. 
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If eu denotes the sign of Pkp» it follows easily from (1) and the 
definition of P-k(x) that ek-ie~k = l for k = 2, 3, • • • , r + 1. For 
simplicity, let a8 and /38 denote the signs of A8 and B8 respec­
tively. Then 

a8 = ( - l)*«+p-(rH)+«(«-i)/2ea I I (eke-k)
rk 

P9 = ( - 1)^1+1+. ( ^ D / 2 ^ J J (***_*)'* 

, (̂  = 2,3, • • • , r ) . 

If r j = l (mod 2) for & = 2, 3, • • • , r, it follows from (7) that 
as=fis = l for 5 = 2, 3, • • • , r, since in this special case we have 
o-8 = 0 - l ) 0 - 2 ) / 2 (mod 2) and p-s = (s-2) (mod 2). In the 
general case, where not every rk is odd, it is simpler and more 
satisfactory to determine /3S than a8, and so the discussion which 
follows is given only for /3S. 

Let ju8 and p8 denote the signs of the leading coefficients of the 
polynomials Mp_t+i(— W, x) and Q8{x) respectively. I t follows 
that p8=

i( — l)8(s~1)/2e8 and from (5) that p5=ft/Xs> whence 
e8 = (~l)s(s-1)/2i8sM5for5 = 2,3, • • • , r. Now ft = 1,0,=» (-/fc)*-1 , 
and so the /38+i are given by the recursion formula 

(8) ft+i = C8.j8t-iM./i^i)r'-1(- l ) ' - * * - * - 1 » 1 ^ , 

(, = 3,4, . . . , r - 1). 

This can be simplified, by treating the odd and even cases sepa­
rately, to 

&+i = ( - l)m*& if r8 s 1 (mod 2) \ 
(9) > ; (s = 3,4, • • - , r — 1), 

ft+i = — jffe—IM»M«—i if f« = 0 (mod 2) J 

where ms is the number of even integers in the sequence 
^2, rz, • • • , rs_i. Although the argument has been given only for 
the constants B8, it is also possible to determine the signs of the 
constants A8 directly from the resultant matrix in a similar 
fashion. 

6. Numerical Example, Consider the two polynomials Qo(x) 
= x7+2x5+x* — x2 — 1 and Qi(x) =x7+x5 — x2 — l. Then 
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I t follows immediately that Q*(x) =Mi(Qo((?i), x)=x*+xz. 
Hence ^2 = 1, r2 = 2, p-3 = 2, and Q*(x) = (-^Y^M^QoiQi), x) 
= — (x2+l). Finally, JU3 = 1, r3 = 3, £_4 = 5, and so Q*(x) 
= Me(Qo(Qi)f x) = 0 . The first remainder is therefore x5+xz and 
the second and last remainder is — x2 — 1, and this is also the 
highest common factor of Qo(x) and Qi(x). 
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