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ON T H E GENERATION OF T H E FUNCTIONS Cpq 
AND Np OF LUKASIEWICZ AND TARSKI 

BY MEANS OF A SINGLE BINARY 
OPERATION 

BY J. C. C. McKINSEY* 

Indicating the n "truth-values" of a Lukasiewicz-Tarski 
logicf by the n numbers 1, 2, • • • , n, we define the functions 
Cpq and Np as follows : 

Cpq = 1, when p^q, 
Cpq = q — p + lj when p<q, 
Np = n — p + l. 

Thus, for example, for n = 3 we have 
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I shall denote a Lukasiewicz-Tarski logic of n truth-values by Ln. 
In this paper I define,t in terms of Cpq and Np, a function 

£t-£<Z such that , in each Ln, Cpq and Np are in turn definable in 
terms of En^pq, The function Eipq is defined by means of the 
following series of definitions. 

DEFINITION 1. Aop = pyAi+1p = CNpAip. 
DEFINITION 2. B0p = Np, Bi+1p = CpBip. 
DEFINITION 3. Dip = CAipNCpNBip. 
DEFINITION 4. Eipq = CpDiq. 

* Blumenthal Research Fellow. 
t For a general discussion of this logic, see Lewis and Langford, Symbolic 

Logic, pp. 199-234. 
J D. L. Webb has recently found (The generation of any n-valued logic 

by one binary operation, Proceedings of the National Academy of Sciences, 
vol. 21 (1935), pp. 252-254) a binary operation by means of which it is possible 
to generate any operation of any w-valued logic. His operation, however, can­
not be defined in terms of Cpq and Np except when n = 2. This can be seen 
from the fact tha t the operations Cpq and Np are class-closing on the elements 
1, n; whereas the operation found by Webb has not this property. 
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In terms of Eipq I define certain other functions as follows: 

DEFINITION 5. Fip^EiEippEiEippEipp. 
DEFINITION 6. Mip = EipFip. 
DEFINITION 7. Iipq = EipEiFiqq. 

I shall now show that , in Ln, Mn^.2=zNp1 and In^pq^Cpq; 
hence that , in Ln, Cpq and Np are definable in terms of the single 
binary operation En^pq. 

THEOREM 1. For every n in Ln we have 

An-_<tfi = n, and An-2p = 1 for p 7e n. 

PROOF. I prove the first part of the theorem by mathematical 
induction on i. By Definition 1, A0n = n. Suppose that A un = n ; 
then A k+\n = CNnA ^n = CNnn = Cln — n. Hence for every i we 
have A{n = n; so, in particular, An^n — n. 

I prove the second part of the theorem by reductio ad ab-
surdum. Suppose, if possible, that the second part of the theo­
rem is false, so that there exists a po<n for which An-2po>l. 
I first show that , on this supposition, Aip0>l for every i^n — 2 ; 
for if we had Aipo = l we should have Ai+ipQ = CNpoAipo 
= CNpol = l, so we should have An-2po = l, contrary to hy­
pothesis. I t can be shown tha t Aipo^n — 2; for from pQ<n fol­
lows po^n — 1, whence Ip^ln — l, whence 2p0 — n^n — 2; and, 
since Axpo^l, we have AipQ = CNpapo = po— (Npo) + l =p0 

~-(n — po+l) — l =2po — n. I t can also be shown that for each k, 
(n — 2>k>l), we have Ak+ipo<Akpo', for from po<n follows 
n — pQ + l>l, so Npo>l) whence Akp0 — Np0 + l<Akpo, and 
since A k+ipo9e 1, we have A k+ipo = AkpQ — Npo+1. Thus we have 

An~2po < An^spo < < A2po < Atp0 ^ n - 2. 

Hence 

An-2po S Arfo - (n - 3) £ (n - 2) - (n - 3), 

and ^4 n _ 2 £^l . But this is contrary to hypothesis. Hence the 
second part of the theorem is true. 

The proof of the following theorem is similar. 

THEOREM 2. For every n in Ln we have 

-£W_21 = ^, and Bn-2p — 1 for p ^ 1. 
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THEOREM 3. For every n in Ln we have 

J9n_2l = n, Dn^n = 1, Dn^2p = p for p ^ 1, n. 

PROOF. By Theorems 1 and 2, and the definitions of Cpq 
and Np, we have Dn^l = CAn^2lNClNBn.2l = ClNClNn 
= CI NCI l = Cln = n, Dn-2n = CA n_2nNCnBn-2n = CnNCnl 
= CnNn = Cnl = l. Suppose now that p^\,n. Then Dn-2p 
= CAn_2pNCpNBn-2p = ClNCpNl = ClNCpn = ClN(n-p + l) 
= Cl[n-(n-p + l) + l] = Clp = p. 

THEOREM 4. For every p^lin Ln, En-2pp = 1 ; and En-2\ 1 = w. 

PROOF. If £ ^ 1 , n then, by Theorem 3, En-2pp = CpDn_2p 
= Cpp = l. Iî p = n, then En-2pp = CnDn-2n = Cnl = l. If £ = 1, 
finally, En-2pp = ClDn_2l = Cl^ = w. 

THEOREM 5. For every p in Ln, Fn-2p = 1. 

PROOF. If p^l, then, by Theorem 4, we have 

Fn-2p = En-2En-2ppEn-2En-2ppEn~2pp = En-2\En-2\l 

= En-i\n = ClDn-2n = Cl l = 1. 

If p = l, then, again by Theorem 4, 

-Fn_2£ = En-2En-.2llEn-2En-2llEn„2ll = En~2nEn-2nn 

= En-2nlCnDn-.2l = Cnn = 1. 

THEOREM 6. ifyr ^;ery £ in Ln, Mn-2p = Np. 

PROOF. Mn-2p = En-2pFn„2p = En_2pl = CpDn„2l = CM = iV> 

THEOREM 7. T^r ^^r^ £ a^^ g in Ln, In-2pq = C/><z-

PROOF. 

In-2/>2 = En-2pEn„2Fn-2qq = En-2pEn-2lq 
= En-2pC\Dn_2q = En_2pDn-2q = CpDn-.2Dn-2q. 

But, by Theorem 3, we have Dn__2Dn-2q = q. Hence In~2pq — Cpq. 
Thus we have shown tha t in each L n it is possible to define 

in terms of C/>g and iV/> a function, namely, En-2pq, in terms of 
which Cpq and iV£ are again definable. 

NEW YORK UNIVERSITY 


