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[(5), 9.] r3s. = .i (6)
[(4), (6)] p3¢q =.r3s (7
[11.03] (1) = (1)(2) (8)
(1), 8)] (1)(2) )
[11.2] (1H(2) 3 () (10)
[12.17] (1)(2) 3 (2) (11)
[(9), (10)] (1)

[(9), (11)] () .

The paradox stated above is a particular case of Theorem 10,
and therefore requires no further proof.

NartioNaL Wu-HAN UNIVERSITY,
WucHANG, CHINA

THE BETTI NUMBERS OF CYCLIC PRODUCTS
BY R. J. WALKER

1. Introduction. In a recent paperf M. Richardson has dis-
cussed the symmetric product of a simplicial complex and has
obtained explicit formulas for the Betti numbers of the two-
and three-fold products. Acting on a suggestion of Lefschetz,
we define a more general type of topological product and apply
Richardson’s methods to compute the Betti numbers of a cer-
tain one of these, the “cyclic” product.

2. Basis for m-Cycles of General Products. Let S be a topological
space and G a group of permutations on the numbers 1, - - -, n.
The product of S with respect to G, G(S), is the set of all n-tuples
(Py, - - -, P,) of points of S, where (P, - - -, P;,) is to be re-
garded as identical with (Py, - - - , P,) if and only if the permu-
tation (};,‘j,’}n) is an element of G. A neighborhood of (Py,---, P,)
is the set of all points (Q1, - - -, Q.) for which Q; belongs to a
fixed neighborhood of P,. It is not difficult to verify that the

t M. Richardson, On the homology characters of symmetric products, Duke
Mathematical Journal, vol. 1 (1935), pp. 50-69. We shall refer to this paper
as R.
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Hausdorff axioms hold for this definition of neighborhood, and
hence that G(S) is a topological space. In particular, if G is
the identity or the symmetric group, G(S) is, respectively, the
direct or the symmetric product of S. If G is the cyclic group on
n elements we shall call G(S) the n-fold cyclic product of S.

The space G(S) can be obtained in another manner. Let S*
denote the n-fold direct product of S. Then each element
(,31‘.',‘,’,?”) of G gives rise to an automorphism of .S* which carries
(Py, - -+, Pn) into (Py, - - -, P;,). By identifying points which
are images of each other under the group of automorphisms we
evidently obtain a space homeomorphic to G(SS).

Now let K be a simplicial complex, K* its direct product,
and & =G(K) its product with respect to the group G of degree
n and order r. We then have » automorphisms 7 of K*, and
a continuous, single-valued transformation A of K* into k&,
such thatt

¢)) ATy = A.

Richardson has shown} that K and % can be subdivided into
simplexes in such a fashion that the transformations 7) and
A are simplicial. We can therefore operate with them on chains
of K». If E and e are simplexes of K" and k, respectively, such
that e=AE, we define the operator A’ by A'e=) z\THE. We
have then

(2) AMN'e = re,
3) NAE = Y T\E.
A

We also find that T3, A, and A’ preserve boundaries and hence
homologies.

The principal theorem of Richardson,§ concerning the Betti
numbers of %, is stated in terms of matrices. For actual compu-
tation we find it easier to work with the cycles themselves, and
so we shall state and prove the theorem in a slightly different
form.

1 In the expression for the product of two transformations, the transforma-
tion represented by the right-hand symbol is to be applied first.

i R, pp. 51 and 53.

§ R, p.52.
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TueoreM 1. Let {T'i} be an independent basis, with respect to
homology, for m-cycles, with rational coefficients, of K", such that

TZWi=+Ta A=1,---,7); and let {1"“} be a maximal subset
of {I‘i} such that

(a) Ty« > + T%, (o 5% B),
(b) T)\T'-“ # — T"‘,

for any N. Then {v*}={AT<} is an independent basis with
respect to homology for the m-cycles of k.

ProoF. (i) The v~ are independent. For suppose that we have
Y aXay®~0, that is, D .x,AT*~0. Then

A'D AT = D AAT e = 3w, N2~ 0,
a a a,\

by (3). Now if Th\T*=€I'i, e= 4+ 1, we cannot have T,I'@= — €I,
for this would imply

T\ = I, T = — ¢Toe = — Te,

contrary to condition (b). Similarly, from (a), we cannot have
T.T#= +T'i, B%a. Hence with each such I'i there is associated
an €;, a I'¢, and s; values of X\ for which ThI'*=¢I". If the last
homology is now written in terms of the basis { I'*}, the coeffi-
cient of I'* will be ¢;5:x,. Since the I'? are independent, €;5;%, =0,
and therefore every x, =0.

Use was made of the properties of the rational coefficients
only in the last step of each part of the proof. Now the s;
introduced in (i) are factors of 7, for the T’ for which T)T'« = ¢;I'¢
evidently form a coset of the subgroup which leaves T* invari-
ant. It follows that the theorem will hold for any coefficient
group in which each element has a unique 7th part;in particular
for the group of residues modulo a number prime to 7.

(i) {y*} is a basis. We note first that since the set {T'¢} is
maximal every I'i is of one of the two forms 7,I'* or I'/, where
for each j there is a \; such that T5,T7= —T'i. Also, AT =AT) I
= —ATY so that AT"=0. Now if v is any m-cycle of k, A’y is
an m-cycle of K*, and so

A"y ~ Z x; 0 = Z xa)\T).T"‘ + E x,-ff,.
i a,\ 7
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Hence

AAI'Y =ry o Z xa)\AT)\Pa + E xjAf"j = Z Xar¥%,
o\ i o\
by (2) and (1). That is,

I D
a,\ 7
3. Betts Numbers of Cyclic Products. Keeping the notation
as before, we let G be the cyclic group on # elements. To com-
pute the mth Betti number of the cyclic product # we must
count the number of m-cycles T=. A basis of the type {I“i}
used in the theorem is obtained by taking all cycles of the form

CmIX"'XCm,,, m1+"'+mn=m;

Cn; being a member of a basis of m;-cycles of K.t Following
Richardson’s procedure, we obtain

T)\(lex tt Xcmxxcm)\_‘_lx co Xcmn)
= (_°_ 1)9Cuy, X -+ X Cuy X Cpy X+ -+ X Comy,

where

€ = mme + - - - + mm, = m(m — my) = mm; — m?

mmy — my (mod 2)
= (m - l)ml)
and by induction

a=@m-—1D0m + - +m) (mod 2).

Let ¢ be a factor of #, n=g¢s, and consider all I'* which are
invariant, to within change of sign, under G,, the cyclic sub-
group of G of order ¢g. They necessarily have the form

Fq=(Cm1X"‘Xcm,)X(CmX"'XCm‘)X"'
X(Cm1><"' Xcm;)7

there being ¢ identical sets of factors. We must have g(m;+

t S. Lefschetz, Topology, p. 228.
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-+« +m,) =m; that is, to have a I'y, ¢ must be a factor of m
and hence of (m, n), the highest common factor of m and #.
If ¢ is a proper multiple of ¢ and a factor of (m, =), it is easily
seen that a T'; is also a T',. We denote by I';f any T, which is
not such a I';, and by 4 ,,,, the number of I'*. The total number
of T, is then Y ;A4n,;, the summation being over all values of ¢
which are multiples of ¢ and factors of (m, #). But the number
of T', is evidently equal to the number of possible combinations
of the form Cn,; X : -+ XChn,, m1+ -+ +m;=m/q, and this is
exactly R,,;,(K®). Hence

2 Ami = Rpy (K719,
¢

and from these equations we can obtain the 4,,, step by step
starting with ¢= (m, »), or directly by the use of the Dedekind
inversion formula.

Now

T, = (— 1)m Dt dm)] = (— 1)(m—-1)m/ql‘q’

and so if m is even and m/q is odd, I'y is a cycle of the type
' of Theorem 1 and is not counted among the T, We therefore
put

B {0, if m is even and m/q is odd,
m,qg —

A m,q otherwise.

Consider the s cycles T}, TWT'¥, - - -, T, ' If any two of
these are equal, say T.T*=T,;T'F (¢>j), then I'* is invariant,
to within change of sign, under the subgroup generated by
T T;=T;_;, and hence under the minimal subgroup contain-
ing G, and T;_;. Since ¢—j<s, T;_;is not an element of G, and
therefore this subgroup is a G; with ¢ a proper multiple of ¢,
contrary to the definition of I';*. It follows that there are ex-
actly s=n/q distinct transforms of each of the B., cycles
I'¥, and so we can pick out (q/#)Bn,, of the I';f which are not
transformable into one another and which can therefore be in-
cluded among the T* of Theorem 1. Since the cycles I';* for
different values of ¢ are not transformable into one another and
since every I'i is a T';* for some ¢, we have the following result.



714 R. J. WALKER {October,

THEOREM 2.
Rm(k) = (1/7) 22 qBm,q,
q

the summaltion being over all factors of (m, n).
The following special cases may be of interest.
COROLLARY 1. If n is an odd prime

(1/m)Rm(K"™), if (m, n) =1,

KB = {(1/n) [Ru(K™) — R(K)] + R(K), if m = ns.

COROLLARY 2. If p is an odd prime and n=p*, m=pfm,,
(m4, p) =1, and y=min «, B3,

-1 1 v

R(k) = f——*l}—— Ra(K™ + 20 pi-lRm,,,t(Kn/p‘)].
n p—1 de=1

COROLLARY 3. If Ro(K) =1, then Ri(k) =Ri(K).

4. Remark. The methods used on the cyclic product can evi-
dently be used to compute the Betti numbers of a product with
respect to an arbitrary group. In general, however, the resulting
formulas are too complicated to be of interest.
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