1936.] NOTE ON A PRECEDING PAPER 681

A NOTE ON A PRECEDING PAPER*
BY FRANCIS REGAN

1. Introduction. In a papert by the author, the following
lemma was proved.

LeEMMA. If X, is an element of A (p), the number {E:=l(g/n)X Ve
is a member of the set A[1—(1—p)"].

Then again,} the author applied a theorem due to Copeland§.

It is our purpose here to extend these two theorems to apply
in the field of geometrical probability. The proof of the theorem
corresponding to Copeland’s follows a different procedure from
that given by him. As a matter of fact, the theorem of Copeland
may be proved by the method given here.

2. Extension of the Lemma. The extension is as follows.

THEOREM 1. If the numbers (¢/n)x(E,), (¢g=1,2,- -, n), are
such that x(E,) = -¢5,(P1), dr(P2), - - -, where E, is the interval
0<y=pq and Py, P, - - - is a set of points admissibly ordered
with respect to the function m(E) (the Lebesgue measure of E) de-
fined in A; 0<y=1, then (1) the number EM (¢/n)x(E)V
has the probability [1 —HM (1—py)] and (2) the number

M (@/m)x(E)V is a member. of the set A[l—H L(1=p2)],
'where MZmn.

ProoF oF (1). We know that||

0~ B () wmave T (2 e

¢=1 =1

* Presented to the Society, February 29, 1936.

t See the author’s memoir The application of the theory of admissible num-
bers to time series with constant probability, Transactions of this Society, vol. 36
(1934), p. 517.

} Same reference as above, p. 524.

§ See Copeland, Admissible numbers in the theory of probability, American
Journal of Mathematics, vol. 50 (1928), p. 550, Theorem 16.

|| The symbol 3~ (¢/n)x(E,)\Vrepresents the number {(1/7)x(E)V - -
V (M/n)x(Ex)\ }, while TI~(g/n)x(E,)  represents §{~(1/n)x(Er) - - -
- (M/n)x(En)- }. Throughout the paper such symbols will have similar mean-
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The numbers ~(¢/n)x(E,), (¢=1,2, - - - , M), are independent,
since (¢/n)x(E,), (¢=1,2, - - - , M), are independent. From (a),

we obtain

g=1 g=1

and hence we have

[ ()]

]

or

where M <.
PRrROOF OF (2). Since

g=1 q=1

then

(ILEC)=e0v] - ~11~

Then
I Z0)-e]

k M

=TI ~TII~

=1 gq=1

-
A £(7)=eov] =1 -1

M M
> j’—)x(&) v=~Tl~
n

> (%) #(E) V=~ ~ (%) #(E2)-,

fi~(2)u ]

M
I‘H(I—Pq);

(£)stza,

([q + (ri — 1)n]

mn

)x(Eq) ..

([q + (;:-n— 1)n]>

%(E,)- .

The numbers 7»; are chosen such that for every set 7,
72, ++, *x, we have 0<r7;<m and r;#7r; if 45j. The numbers
~([g+(ri—1)n]/mn)x(E,) are independent. Hence the num-
bers HZ‘_IN( [g+(ri—1)n]/mn)x(E,) - are independent, from

ings. For the truth of this equality, see Copeland, The theory of probability
from the point of view of admissible numbers, Annals of Mathematical Statistics,

vol. 3 (1932), p. 149.
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which it follows that the numbers NHM ~([g+(ri—1)n]/mn)
x(E,) - are independent. We may now conclude that

k A M k
(D) () swav]} = {i - Ta-s}"
t=1 m g=1 n g=1
Therefore, the number ZM (g/n)x(E,) is an element of
Ala- Hq—l $2) ], where M<n

3. Analog of Copeland’s Theorem. In order to prove the
second theorem, we shall néed the following lemma.

LEMMA. If the numbers xi, xi,---, xyl, x2, %2, - -,
vk, -, xf, xfF, - -, xnk are such that xi -x;* =0, where
iVi' and x,}, x,2, - - -, x,¥ are independent, it follows that the

numbers  (xtVxdV - - - Vanl), (x2VxEV .- Vanl), - -,
(xFV xfV - - - Vank) are independent.

By hypothesis, %, x,2, - -, x,F and xf, x,2, -, x.0 )
are independent, and since xi -x¢ =0, the numbers x{Vxd,
x.,f, -+ -, x,F are independent.* Then the two sets of numbers
xtVad, 2,2, -+, xy} and xd, x,2, - - -, x,F are independent,
and since (xfVaxd) -xd =(xd xd)V (xf- x31) 0, the numbers
xtVxdV xd, x,2, - -, %,F are independent. In general, the
numbers (x;Vxd V - - - Vanl), 2,2, - - -, x,F are independent.

Applying the above to each of the (k—1) remaining groups
of numbers, we conclude that the numbers (x; Vaxs V- Vayl),
(xEV 22V - Vax2), -, xfVaFV - - -Vayk) are inde-
pendent numbers. Hence we have proved the lemma.

We now come to the analog of the theorem of Copeland.

THEOREM 2. If the numbers (¢/n)x(E,), (¢g=1,2, - -, n), are
such that x(E,) = ¢ (P1), ¢p(P2) - - -, where E, is the interval
0<y=pq and Py, Py, - - - 1is admissibly ordered with respect to
the function m(E) defined in A: 0<y =1, and if

M
X=2V;Vand V;= H(q”) x(E,,))- H (q”) ®(Eg))-,
j=1 i=1 \ 7 f=a 41 n

where 0K qi; <n and ¢/ ;7 qi; if ©'#1, and where YV = V; if j'5#7,
then X belongs to the set A(P), where

* See Copeland, Admissible numbers in the theory of probability, American
Journal of Mathematics, vol. 50 (1928), p. 543, Theorem 6.
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P = Z{Hm,, > (- pq,,}

j=1 =1 t=aj;+1

Since the numbers (¢/#n)x(E,) are independent, the numbers
~(q/n)x(E,) are independent. By hypothesis, we know that
Y;-Yp=0if j=j’. Hence p(X)=P. Now we wish to show that

{11(2)<]-~

for every positive integer m and for every set of distinct integers
71, 72, *+ * -, 7k, such that 0<7, <m. We know that

( m> f;I < qi,(,{;_ﬂ) 2(E,,;)
I"I N[[Qii + (rs — l)n]] HEy)

t=aj+1 mn

The numbers constituting the above product are independent,
and moreover (ri/m)Y;, (ro/m)Yi, - -, (rx/m)Y;, are inde-
pendent regardless of whether ji, js, - - -, jr are equal or not.
Within each group any two distinct numbers are mutually ex-
clusive; that is, (r;/m)Y; - (r./m)Y;»=0 if jj’. We may now
apply the above lemma. Hence the numbers

M M M
2 (n/mY iV, 22 (n/mY iV, -y 2 (r/mY ;v

are independent. We know that

ATE) ] [IEH E v ]
-G )

but since the numbers Zial(rs/m) Y,V are independent, the last
term is equal to P* Therefore the theorem is proved.

It is obvious that the above theorems can be extended to an
n-dimensional continuum.
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