
INSTRUMENTAL ANALYSIS* 

BY VANNEVAR BUSH 

The use of instruments of computation and analysis is as old 
as mathematics itself. Counting by the aid of piles of pebbles 
gave origin to the word calculus. There have always been such 
aids to reasoning, and the development of instrumental methods 
has throughout proceeded in parallel with formal methods. 

Under instrumental analysis is to be grouped all analysis pro­
ceeding by the use of devices for supplementing pure reasoning, 
whether these devices involve mechanics, optics, heat, electric­
ity or other natural phenomena. The device aids the mind be­
cause it approximately obeys some simple law, and may be 
made to indicate the consequences of combinations of such rela­
tionships. An example is the ordinary compass which will draw 
an approximate circle. One may reason about the properties of 
families of circles and never draw a diagram ; but such reasoning 
is more surely guided by a few pictures. The instrument, what­
ever it may be, has two functions: first, when approximate re­
sults are sufficient, to yield these directly; second, as a sugges­
tive auxiliary to precise reasoning. 

The first piece of mathematical apparatus used was the hu­
man hand. Nature, for some reason that is not entirely clear, 
supplied us with ten fingers, and in the groping development 
that characterized the beginnings of mathematics, this settled 
the decimal system upon us. Our forebears apparently did their 
reckoning standing up, or we might, as in fact did more than one 
tribe, have used toes as well, and thus landed on the vicenary 
system. Had this occurred it would have been possible to regis­
ter all of New York's automobiles with five figures; and Con­
gress would probably have had to be satisfied with merely eight 
figure appropriations. I t is certainly fortunate that at least both 
hands were used, or the newspapers would now be running out 
of zeros. 

* The twelfth Josiah Willard Gibbs Lecture, delivered at St. Louis, Janu­
ary 2, 1936, under the auspices of the American Mathematical Society, at a 
joint meeting of the Society with Section A of the American Association for the 
Advancement of Science. 
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How Archimedes managed to approximate T as well as he 
did by an involved geometrical computation in Greek numerals 
has not been adequately explained. The world suffered long for 
lack of positional numeration, and for a symbol for zero. Neither 
of these were invented by formalists. Both were the product of 
instrumental analysis. They came as the direct and inevitable 
result of the use of the abacus. 

To the occidental it is sometimes necessary to explain that 
the abacus is the most widely used mechanical computing ma­
chine, even today. An expert in its use can nearly keep up with 
the operator of a simple keyboard-adding-machine, and he can 
multiply as well. It is a very old device, and no one knows its 
inventor. Originally, probably, a group of piles of pebbles, it de­
veloped into a form in which counters are strung on parallel 
rods or wires. The mechanical fact that it is convenient to mount 
rods or wires parallel to one another in a frame produced the 
idea of positional numeration, and the necessity for noting down 
complete absence of counters under such circumstances gave us 
the zero. That the world had to wait so long for these important 
ideas occurred because the formalists of the time declined to 
use the plebeian abacus in connection with their profound medi­
tations. So they stuck to their cumbersome notation, while men 
of trade, with a mechanical aid, produced the most far-reaching 
of mathematical inventions. The formalists insisted that ruler 
and compass were the only tools worthy of the gentleman 
scholar, and by this insistence directed the attention of the 
learned for centuries to three impossible problems, made so by 
the artificiality of the limitations. Even today the race of angle 
trisectors has not died out, although the problem was resolved 
over a century ago. 

Thus, from the earliest times, and in the most profound ways, 
the use of instruments has influenced the course of formal 
mathematics. The fixing of the decimal system by the posses­
sion of ten fingers, the origination of positional numeration and 
the zero by the users of the abacus, the cramping of the mathe­
matical style of the Greeks by the ruler and compasses, are in­
cidents in the process. The instrument has been much more than 
the useful aid; it has often exerted a determining control over 
the course of events, helpfully or otherwise. This situation is not 
likely to terminate, and in fact there is every reason to expect 
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tha t the interrelation will be more complex, if not more inti­
mate, now that mechanical devices may employ a host of new 
elements and processes. Yet there is a considerable gulf between 
formal mathematicians and those who make and use mathe­
matical instruments. I t is the purpose of this paper to suggest 
that formal mathematics may again be influenced by instru­
mental development, and that there would be mutual benefit 
if the gulf between them were less wide. 

When Babbage struggled to put into effect his glorious ideas 
of mechanical analysis, he was stopped by the expense and delay 
inherent in his time in the construction of a really complex de­
vice. Today much more complex affairs are built at reasonable 
cost, by reason of mass production of duplicate parts, modern 
gauging and materials, and modern processes of fabrication. 
Moreover, and very important, these complex devices are re­
liable-, witness the automatic telephone switchboard or the type­
setting machine. This development has had a large effect in the 
field of arithmetical computation. It will have a comparable ef­
fect, ultimately, in the fields of other mathematical instru­
ments. There is, nevertheless, a serious barrier to be over­
come before this occurs. Reliability comes, in a complicated 
machine, only when a great deal of study and experiment is 
devoted to the design of individual parts, which are then fabri­
cated by methods that produce large numbers of precise repli­
cas at low unit cost. The spread between development and pro­
duction cost may be enormous: thousands of dollars may be 
spent in perfecting a simple relay or lever which may later be 
produced for a few cents each, provided hundreds of thousands 
are made. This barrier militates heavily against the research 
tool, which is potentially useful in only a few laboratories. 
Otherwise there would be available a much greater variety of 
mathematical instruments than at present, and their perform­
ance would be more satisfactory. Yet it appears, in spite of this 
inherent limitation, that we are at the beginning of an impor­
tant period of development of machines for higher analysis. 

The numerical machine is old ; Pascal made an excellent add­
ing machine of which we fortunately have records [ l ] ,* and 

* Numbers in square brackets refer to the bibliography at the end of this 
paper. 
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Leibnitz one capable of performing the four operations of arith­
metic [2]. These early devices involved all of the really basic 
inventions necessary for the successful construction of machines 
of this class. Leibnitz performed multiplication by repeated 
addition, shifting columns as the several digits were treated, 
and this procedure persists in most modern machines. I t re­
mained for Bollé to introduce the multiplication table in the 
form of a three-dimensional cam, and multiplication is thus 
performed by fewer operations, as many as there are digits in 
the multiplier [3]. This of course gave his machine greater 
speed, and facilitated division as well. It is comparatively re­
cently that such machines can be built at moderate cost, and 
sufficiently reliable and rugged to withstand continuous hard 
usage. The combination of such machines with punched cards 
[4], [5] has made arithmetic into an entirely new affair, and 
it has enabled large banks, insurance companies, and businesses 
generally to operate in ways that would be fantastic by long­
hand methods. There is a great deal more arithmetic and better 
arithmetic in the world than there used to be. This is indicated 
by the fact that 10,000 tons of cards are used per year, a total 
of four billion cards or nearly one card per dollar of a famous 
recent appropriation. The end of the development is not in 
sight, and much remains to be accomplished. Part of this is 
due to the fact that the development of such machines is highly 
expensive, so that they have been produced to meet the needs 
of large markets, namely, those of the usual business. The usual 
business doesn't go far beyond rather simple mathematical op­
erations. Yet, now that there is momentum, the large possibili­
ties of the process will undoubtedly be opened up. 

The future development of arithmetical devices would appear 
to lie along the lines of their employment for more complex cal­
culations than at present. One matter that needs attention is 
an increase in the amount of information that can be placed on 
a card. The obvious way, that of decreasing the size of holes, 
has its limitations, although if photography and photo-cell con­
trols were used a great deal could be thus accomplished. A fac­
tor of 1000 in the amount of information which may be stored 
in a given volume appears thus readily attainable. We now have 
two main types of punched-card apparatus, that operated by 
making electrical contacts through the holes, and that operated 
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by mechanical rods which pass through the holes to actual con­
trols. These may later be joined by a type in which a light beam 
passes through and operates a photo-cell. This opens up large 
vistas, for the light may be pulsating and made to produce a 
control depending upon its frequency or duration. 

There is another way of increasing the information on a card, 
that of using combinations. This is just beginning to be used. 
The usual card is divided into columns, commonly 40 or 80 in 
number. There are 10 positions in a column. One hole only is 
punched in a column, and by its vertical position indicates a 
number. Thus only 80 numbers may be carried by a card. If 
these numbers are typed by typewriter, the space they occupy 
is less than 1/10 of the area of the card necessary to carry them 
by the punched scheme. This is not good space economy. To 
improve it, combinations are used. Two holes, producing a 
joint effect, may together designate a number and shorten the 
column. This is readily extended to letters, and thus 80 letters 
may be placed on a standard card. However this principle of 
combinations might be carried much farther. Using combina­
tions of two, five positions are sufficient for 10 numbers, thus 
doubling the card capacity. Carrying the idea to extremes, al­
though with evident difficulty of practical utilization, much 
more can be attained. There are 800 positions on a card. Com­
binations of these by two's allow over 300,000 bits of informa­
tion to be carried. This would allow roughly 10,000 letters of 
the alphabet, and their sequence, to be carried on a single card, 
enough to record the information on three typed sheets of usual 
size. The use of combinations of holes may evidently be much 
extended. 

Great ingenuity has been shown in obtaining desired se­
quences of operations ; but there is still a great deal of carrying 
cards from one machine to another, and each problem is unique. 
A group of columns on a card assigned to a particular number, 
or set of symbols, is called a field. A stack of cards constitutes 
a two-dimensional array of fields, and each field may contain 
a number, to a precision determined by the size of field chosen. 
Apparatus is available for automatically combining any two 
such numbers, thus recorded on a given card or adjacent cards, 
in accordance with any of the four numerical operations, and 
recording the result in a similar manner. The process of bring-
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ing the correct numbers into position for the performance of 
operations, especially for a long sequence of operations, is now 
the laborious procedure. It involves carrying the cards from one 
to another of many machines, and waiting each time for the 
specific operation to be completed. A master control is here con­
ceivable. This process should also be automatic and performed 
entirely by machine. It should be sufficient, having punched a 
stack of cards, then to punch a master card, dictating with com­
plete flexibility the operations to be performed, their sequence, 
the pairs of numbers in the array upon which the operations 
are to be impressed, and the position in the array where the re­
sults are to be joined to the array. A numerical process, however 
complex, would then be reduced to the recording of the raw 
data, and the exact specification by similar record of the desired 
numerical process, all else being relegated, as it should be, to the 
machine. Such an arrangement would no doubt be soon worked 
out if there were sufficient commercial demand. This would be 
a close approach to Babbage's large conception [4] as far as 
arithmetical processes are concerned. It would complete, for 
arithmetic, the consummation which Leibnitz visualized for all 
mathematics. 

Quite a lot can be accomplished by arithmetic alone, if its 
operations can be performed rapidly enough, and combined 
with suitable facility. Witness the difference engine, projected 
by Babbage, and suffering inevitably from the high cost of pre­
cision construction of the time. Feed one of these machines the 
skeleton of a table, and it will fill in and print the entire table. 
I t has been used for this purpose to good effect. I t consists es­
sentially of adding machines coupled together so that a whole 
sequence of operations is automatically performed one after an­
other, corresponding in this case to the steps involved in higher 
order interpolation. Complete machines of this sort have been 
built by Scheutz and others [ó]. I t is time that a numerical 
machine were built for which the sequence of operations might 
be varied at will to cover a large field of utility, but just as fully 
automatic once the sequence is assigned. 

There is not the slightest doubt that numerical machines are 
destined to be further developed and exceedingly useful. Their 
influence on the users of arithmetic has been powerful. Business 
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does not seem to realize as yet that it needs anything more than 
arithmetic in its ordinary affairs, and so other devices dealing 
with branches of mathematics beyond arithmetic have not had 
the benefit of aggressive commercial development. They are 
none the less interesting and important, and ultimately their 
influence may be as great or greater. They will serve, however, 
the scientist and research man rather than the man of business, 
at least at first. 

No applied mathematics except arithmetic is ever exact, and 
even arithmetic often merely has that appearance. So when we 
turn from arithmetic we find devices that are expected to yield 
approximations to mathematical processes, sufficiently precise 
for use in applications. There are two main classes, the opera­
tors and the equation solvers. No short summary can be at all 
complete in regard to either, for the literature of the subject is 
enormous, and each device requires much exposition if it is to 
be all understood. This is especially true since there is often 
such a wide gap between the conception of such an intrument 
and its actual construction and use, so that details are often 
important. Hence only a few will be selected for illustration in 
what follows, with full regret that every interesting develop­
ment cannot be given its due recognition. 

Before a mathematical operation can be performed mechani­
cally by an instrument of the first class, the data must appear 
in the form of a mechanical record. For this purpose two sorts 
of records are necessary, those representing numbers, and those 
representing functions. On the form of record depends the means 
that may be utilized in performing the operation. 

Numbers may be recorded in many ways. The position of 
holes in a card has proved a very fruitful way. The most obvious 
is by means of a distance between index lines. This leads di­
rectly to the combinations of such distances by geometric 
means, including link motions. The slide rule of Oughtred[7], 
the alignment charts or nomograms of d'Ocagne, follow almost 
inevitably. Some of the modern counterparts of these are highly 
complex and are likely to be genuinely useful only when the 
occasion for use is sufficiently extensive to submerge the not in­
considerable time necessary for their mastery. The systematiza-
tion of nomograms, by identification with determinants [7] has 
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been especially helpful in this regard, for it replaces chance in­
vention and sometimes bizarre manipulation to a standardized 
affair. 

Usually the geometrical combination of distances represent­
ing numbers is limited to cases where moderate precision is 
ample. The much coiled slide rules become rather cumbersome. 
Tha t this is not an inherent limitation is shown however, by 
Harrison's machine for evaluating differences [8]. This ma­
chine was developed for rapidly and precisely recording the 
enormous array of differences between wave numbers involved 
in the analysis of spectra. The numbers are represented by dis­
tances to holes punched in a long tape which is folded back on 
itself. A light above makes records through the holes on a sheet 
of sensitized paper moving slowly below in a direction perpen­
dicular to that of the tape. The position of the dots then gives 
the desired differences directly. A long loop insures high preci­
sion. 

Anything measurable may of course be used to represent a 
number. Thus the deflection of a spring is especially useful when 
many products are to be obtained. This was employed, for ex­
ample, in the Michelson-Stratton harmonic analyser [9], which 
operated with a finite number of ordinates or components, so 
that it was a device for combining sets of numbers in predeter­
mined fashion. 

The representation of a function is most readily made by 
means of a simple graph. Once represented, the operations of 
differentiation and integration are evidently fundamental. 
There have been many ways of performing the latter, but 
very few of the former, and this is due to the fact that pre­
cision in taking the derivative of a function approximately 
represented by a curve immediately involves all of the diffi­
culty that would be mathematically expected. Moreover many 
devices projected for this purpose have attempted the impos­
sible feat of finding a derivative by examining one point. Some, 
such as the optical devices, have depended upon the ability of 
the eye to detect readily a discontinuity in the derivative of a 
curve [lO], I t would be interesting to examine the extent to 
which the eye is able to note discontinuities, in fact there seems 
to be some connection between this matter and the artist's idea 
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of a pleasing curve, but neither the psychologists nor the artists 
seem to have investigated the subject systematically. 

The most reasonable way to obtain a derivative mechanically 
appears to be to measure the average slope over an adjustable 
known interval, and this Sears does very neatly [ l l ]. The curve 
is made into an optical mask, which may be of either the vari­
able area or the variable density type, and this is oscillated in 
the direction of abscissas in front of a slit. Light passing the slit 
is summed by a photo-electric cell. The fundamental component 
of the alternating photocell current is then a measure of the 
derivative. Both the width of slit and amplitude of oscillation 
are adjustable, to adapt to varying degrees of precision in the 
curve. 

One of the easiest ways to take a derivative is electrically. 
If the form of a varying current through a pure inductance 
represents a function, the voltage across the inductance repre­
sents the derivative. Unfortunately it is not easy either to cause 
a current to vary precisely in a prescribed manner, nor to meas­
ure precisely a varying voltage. The combination of mask, op­
tical system, and photo-cell will accomplish the current control. 
This has appeared, combining sinusoids, in acoustical devices 
for electrical organs, and of course in the ubiquitous talkies. 
None of these applications require the precision desirable in 
mathematical instruments. A varying voltage may be very con­
veniently measured by modern cathode-ray oscillographs, but 
again not with the precision desirable for purposes of analysis. 

The integral of a function represented by a varying current 
may be obtained by passing the current through a condenser, 
and measuring the resulting voltage as before. We shall return 
to this matter of electrical-circuit methods later. 

When a function is represented by a graph, the most obvious 
way to obtain an integral is to cut the curve out and weigh it. 
This yields a definite integral, and not a running integral, as 
does in fact the simplest planimeter. Planimeters are note­
worthy as instruments which are mechanically simple and 
mathematically complex. The extreme is the old knife-edge or 
hatchet planimeter of Prytz [12 ], which works surprisingly well, 
and causes so much involvement when one is called upon to ex­
plain why. 
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Cutting out a mask to represent a function, uniformly il­
luminating it, and collecting the light that goes through on a 
photo cell, gives an integral conveniently, but not highly pre­
cisely on account of the limitations of photo-cells and optical 
systems. It does, however, give a possibility of interesting com­
binations, which will be mentioned later. 

Any adjustable-speed drive may be made into an integrator. 
If the setting of the adjustment of the ratio of drive is made to 
vary in accordance with a given function of a variable, while 
one shaft turns in accordance with the variable itself, the rota­
tion of the output shaft gives the integral. If the shafts are inter­
changed the output then gives the integral of the reciprocal of 
the function. James Thomson's disc-ball-and-cylinder integrator 
was of this type [13]. The ball contacts the disc at a point on a 
diameter, and the cylinder at a point on an element, and trans­
mits motion between them. The disc is turned in accordance 
with the independent variable, the displacement of the ball 
from the center is regulated in accordance with the function to 
be integrated, and the rotation of the cylinder yields the inte­
gral. Its modern form, in the hands of Hannibal Ford, has be­
come a rugged and reliable instrument [14]. Ford's form has two 
balls, with direct pressure, and the presence of two balls allows 
displacement under pure rolling. Maxwell gave a discussion of 
this type of integrator [13], but unfortunately not a complete 
analysis. If one assumes no backlash, no plastic deformation, 
and no slippage, the performance is exact; but in a physical in­
strument the areas of contact are finite. One point only of the 
area is a point of zero relative motion, and this point shifts in 
the area when there is any torque, due either to friction or in­
ertia. 

With high pressure on the balls considerable load may how­
ever be carried and with remarkable precision, although care 
must be taken in regard to mechanical hysteresis. 

For highly precise work the disc and roller type [15] appears 
preferable, for here the area of contact is greatly reduced, and 
indeterminateness of the position of the zero point is rendered 
less important. The edge of the roller is hard and fairly sharp, 
and its shaft is actually in jewel bearings. Such a unit is capable 
of excellent performance, but it can carry practically no load. 
Hence, to be useful, it can merely control rotation, the work 
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being derived from another source. The most convenient way 
is by a torque amplifier [16], which is a device whereby one 
shaft moves another precisely in step, but with much larger 
torque delivered than supplied. This works on the same principle 
as the capstan or windlass, and depends upon wrapped bands. 
The input shaft pulls one end of the band, and the band rubs 
on a continuously revolving drum and pulls the output shaft 
along. Two drums provide for both directions of rotation. Units 
are in continuous operation giving multiplying factors as high as 
10,000. 

After simple integration the next important operation is the 
integration of a function multiplied by a standard kernel. The 
most prevalent form of device for performing such an operation 
is the harmonic analyser, for evaluating the integral of the 
product of a function by a sinusoid. Great ingenuity has been 
shown in devising such instruments, and scores have been in­
vented. It is not much exaggerated to state that as many forms 
have been invented as there are actual instruments in present 
use. Perhaps this is not undesirable, for it is certainly much 
more pleasant to invent a device of this nature than it is to 
operate the finished product. The writer pleads guilty to having 
invented several, none of which are in use. Most harmonic 
analysers are mechanical combinations of variable speed drives 
used as integrators, with link motions or cams for introducing 
the sinusoidal factor. Such, for example, is the Chubb machine 
[17]. The most convenient and precise is the Henrici-Coradi 
[18], which introduces its sinusoidal components by means of 
rollers operating on the surface of glass spheres. There are, how­
ever, optical devices, those depending on spring deflections, 
devices for displacing fluids, and many others. An harmonic 
analyser, when inverted, becomes a synthesizer. Such are, for 
example, the tide predicting machines, of which the first was 
Kelvin's [19]. 

Of greater mathematical scope, however, is a device for ob­
taining instantaneously the integral of the product of two given 
functions. Suggested by Wiener, it has been developed over 
several years by Gould, Gray, and Hazen [20]. The functions 
are represented by optical masks placed in parallel planes. The 
light from a linear light source which passes through both masks 
is summed by a photo-cell, and gives the measure of the integral 
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of the product. If one of the masks is now shifted in the direction 
of abscissas, the effect is to shift the origin of one of the func­
tions. The value of the light received plotted against the shift 
thus evaluates an integral with a cyclic kernel as a function of 
the parameter under the sign of integration. Work is now under 
way which aims, in effect, at deforming one of the masks in 
predetermined fashion, thus evaluating an integral with a gen­
eral kernel. Such an instrument, which has been called a cinema 
integraph, is immediately applicable for the evaluation of Fou­
rier transforms, for correlation analysis, and many other pur­
poses. 

There is a very fundamental difference between this last in­
strument and the usual integrator, a difference of profound 
mathematical importance. Evaluating an integral of a product 
of functions is one thing, but examining the variation of the 
integral when one of the functions is deformed or shifted is quite 
another. There are many devices for performing operations. 
The most interesting effects occur, however, when these are 
combined. 

The more important class of instruments is therefore the 
second, the equation solvers. There are three principal types. In 
the first, simple analogy is used. To solve the equations controll­
ing the performance of a given system, a second system is set 
up which obeys the same laws, and its performance is measured. 
The benefit of the substitution is merely one of convenience and 
precision in measurement. Thus, it is relatively easy to measure 
the flow of a fluid and hard to measure the flow of heat. Hence, 
if one wishes to examine the transient flow of heat in a complex 
device, where analysis is out of the question, such, for example, 
as a complicated system of hot pipes imbedded in an insulator, 
one may construct an analogous system where the flow of heat 
is replaced by the flow of a viscous fluid and measure that. All 
that is necessary is to provide an apparatus representing the 
cross section of the system by two plates close together with 
holes representing the pipes, and supply fluid to each of these 
holes at pressures proportional to the corresponding pipe tem­
perature. Inserting dye at spaced points will give the flow lines, 
as was done by Hele-Shaw and his collaborators [21 ]. Collect­
ing and measuring the fluid gives the total heat flow directly. 

A variation of this scheme is to employ a system of the same 
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general type, but on a different and usually reduced scale. The 
dimensions and parameters are so chosen that the original equa­
tions still hold, with modification only by multiplication of va­
riables by constants. The systems are, in other words, arranged 
to be dynamically similar. This is the scheme of the wind tunnel 
[22]. A small airplane, or a small ship, is tested and the results 
then interpreted to apply to the full-sized device. In each case 
the velocity through the fluid is usually reduced, as well as the 
dimensions. There is a complication in this process. The resist­
ance to the passage of a solid through a fluid is of at least two 
sorts, and they obey different laws. Thus a ship has wave resist­
ance and skin resistance [23]. The same scheme of scaling 
down will not apply to both. Hence it is necessary to render one 
negligible or measure it separately, and great difficulty in at­
taining high precision ensues, which is the reason that the use 
of towing tanks and wind tunnels causes so many arguments, 
and the reason why large ones are preferred. 

In the second type of equation-solver, the constants of the 
system being studied are independently represented, and this 
leads to flexibility. An electrical example of this second type of 
instrument for the solution of equations is given by the Net­
work Analyser [24]. I t is primarily intended for the examination 
of complex electrical power networks, and it hence solves cer­
tain restricted classes of simultaneous algebraic equations with 
complex coefficients. I t consists merely of a set of condensers, 
coils, and resistances which may be connected together by plugs. 
There is thus produced an exact small-scale electrical replica 
of the system being studied; a miniature network having the 
same electrical proportions as the actual system. To this are 
applied, at various points, voltages proportional to those applied 
to the actual network, and in the same phase relations. The 
voltages, and hence the currents, are scaled down, and hence the 
model may be physically small. Measurements made with or­
dinary instruments yield the performance of the full-size system 
under interesting operating or emergency conditions. A power 
system covering several states is thus compacted into a single 
room for detailed examination. This type of instrument forms 
an intermediate step between the simple model and the com­
pletely flexible equation-solver, for the Network Analyser may 
be reconnected to represent any desired power system within its 
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limits, and thus one instrument serves for the solution of prob­
lems concerning many power networks. 

The third type of equation-solver is, however, the one with 
which we are now most concerned. Like the others, it provides a 
new system, which obeys the same laws as the one under in­
vestigation, and which may be readily and precisely measured, 
but it does so in a different way. Instead of carrying over an 
entire equation from a system to its substitute, or even the con­
stants of the equation as in the Network Analyser, the terms 
of the equation are carried over individually as such and then 
recombined. This gives great flexibility, for, since the mode of 
combination is under control, many diverse systems may be 
studied by a single substitute instrument. As soon as elements 
are available for performing the operations indicated in an equa­
tion, whatever they may be, one thing only is necessary to make 
an instrument for solving the equation. That is to close the train 
of operations, or "back-couple" the device. If the equation 
admits of a discrete solution, this process fixes the parts in posi­
tion. If the solution is a relation between variables, the device is 
constrained to move only in accordance with that relationship. 

The instrument for solving simultaneous linear algebraic 
equations gives an example. Wilbur has produced a mechanical 
device for this purpose, modifying a suggestion which originated, 
as did so many ingenious ideas, with Kelvin [25]. Unknowns 
are represented by the angles of platens. The positions of a set 
of pulleys represent the coefficients. Steel bands running over 
these pulleys have an effective lengthening or shortening rep­
resenting the terms of the equations, each band corresponding 
to one equation. Each band passes over a pulley on each platen, 
thus summing the terms of the corresponding equation. On 
setting the ends of the bands on indices representing the con­
stant terms, the entire device is fixed in position, and the angles 
may be read and hence the unknowns determined. The device 
is entirely geometrical, and no elastic deformation of parts is 
employed. Before the last band is anchored to its index, all 
platens are free to move. Fixing this last band completes the 
set-up and locks every element in position, provided the equa­
tions are determinate. 

Mallock has built an electrical device for this same purpose 
[26]. The variables are represented by alternating currents in 
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closed circuits, which are coupled together by transformers with 
adjustable numbers of turns, made proportional to the coeffi­
cients, there being as many coils on the transformer as there are 
variables, plus one to represent the constant terms. Since the 
total ampere-turns on a transformer must be zero, except for a 
small excitation, the equity is thus forced. Mallock has a very 
ingenious way of supplying the excitation separately, to avoid 
error. 

Higher order algebraic equations may be handled in various 
ways, but so far not precisely [27]. The use of the displacement 
of solids dipped into liquids, as exemplified by a proposal by 
Meslin, gives one method of attack. 

The third type of equation-solver is best exemplified by the 
differential analyser [IS], which is an instrument for solving 
ordinary differential equations. I t consists essentially of a set 
of integrators and means for interconnecting them. Kelvin 
made the suggestion of this procedure [28], but much develop­
ment was necessary to reduce the idea to practice. There is no 
limit to the complexity of the equations which may be treated 
except the number of units available. Several differential-analys­
ers have now been built, and are being used on a large number 
of problems. Detailed descriptions are available, so only a few 
points will be mentioned. 

The manner of "back-coupling" the device is of especial in­
terest. A single integrator is merely an instrument for perform­
ing the operation of integration. If its disc be turned at constant 
speed, having at any time an angle x, and if its displacement be 
varied in accordance with a variable y, its output will yield the 
value of fy dx. Suppose now, however, that its output be 
connected to the y shaft. This is back-coupling. I t forces y at all 
instants to be equal to the output of fy dx. The machine is 
now constrained, and can move only in one definite way, 
namely, in accordance with the equation y=fy dx or dy/dx = y. 

I t thus yields the exponential solution of this equation, if 
simultaneous readings be taken of the positions of the x and y 
shafts. This is the simplest possible sort of back-coupling. Ac­
tually, in interesting problems, several integrators are inter­
connected, together with differential gears for adding, and out­
put tables for introducing variable coefficients, before the final 
connection is made which fixes the performance of the machine. 
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The way in which an equation is placed upon the machine 
may be traced. I t is first solved formally for the highest order 
derivative, and integrated once formally, to yield the derivative 
of next lower order. A shaft is assigned to this, and one to the 
independent variable. An integrator may now be connected to 
yield the derivative of next lower order, and so on until the de­
pendent variable is reached. As we proceed in this manner, 
every term in the equation becomes represented by the revolu­
tions of a shaft. These shafts are then interconnected through 
differential gears so that their revolutions sum to zero. This 
closes the equation, and in effect provides for the drive of the 
shaft assigned to the next to highest order derivative. When the 
independent variable shaft is now turned, every other shaft is 
driven, and the machine is constrained to move in accordance 
with the equation. The initial conditions are introduced by 
setting the starting portions of the integrators. 

Two terms may be multiplied by a separate mechanism, or 
better by summing their cross integrals. The square of a variable 
may be obtained by integrating it against itself. Functional co­
efficients may be introduced manually as the solution proceeds ; 
but it is more convenient, and also more accurate, to generate 
them wherever possible. Any coefficient which can be obtained 
as the solution of an ordinary differential equation may be thus 
generated, by assigning a portion of the machine to this duty. 
When thus treated an ordinary differential equation with vari­
able coefficients becomes a more complicated set of equations, 
but with constant coefficients. 

Manual introduction of functions has however one interesting 
consequence. The procedure is as follows: An index lies on a 
plotted curve. I t is driven in the direction of abscissas by any 
desired variable by coupling to the machine at the proper point. 
I t is cranked in the direction of ordinates by hand so as to re­
main on the curve. The crank also turns the shaft in the machine 
which represents the function. But this makes possible another 
procedure. The curve being followed may be the actual record 
being traced by the machine as a solution, the abscissal motion 
of the index being controlled by a separate variable, a fraction 
of the variable of abscissas of the curve, or some other. A wide 
range of functional equations may thus be handled. 

I t is interesting to speculate on the effect of coupling the 
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cinema integraph to the differential analyser. One of the terms 
of the equation being solved may then involve a variable param­
eter under the sign of integration, and the other terms may be 
those of an ordinary or functional differential equation. 

This does not, of course, treat the type of integral equation 
which is equivalent to a partial differential equation plus a set 
of boundary conditions. The cinema integraph is adapted to do 
this by successive approximations, but not directly. The differ­
ential analyser also has possibilities in this regard, for it can 
handle the equations of the characteristics and thus make the 
solution indirectly. The direct approach would require the con­
tinuous deformation of one of the masks in such manner as to 
cause equality of the output to a specified combination. This 
has not yet been attempted. 

This brings us to the final section of this paper. What may be 
the mutual influence in the future between machines of the sort 
considered and formal mathematics? 

The machine will not, of course, yield a formal result; it will 
give only approximate solutions. But its limitations are not at 
all those usually attending formal solutions. The machine does 
not care how complex the expression for a coefficient may be, so 
long as it may be plotted. Discontinuities bother it not at all. 
Bizarre combinations, such as a function of a derivative appear­
ing as a coefficient, are exactly as readily provided for as is the 
usual case. 

There is no use thus solving an equation unless its solution 
means, something concerning a physical system or unless it sug­
gests the form of a formal solution. In the past we have treated 
physical problems by means of equations that, allegedly at 
least, could be solved formally, and the equations have been 
rather simple in their make-up. Is this because nature prefers 
the sort of equation that we can handle formally? Or has there 
been a sifting process whereby the simple equations only have 
survived? 

The equations that come to the differential analyser are "rea­
sonable" equations, in that they admit of solution in a reason­
able time of operation of the machine ; whereas it is readily pos­
sible to construct arbitrarily equations which are most unrea­
sonable in this respect. Why is nature so reasonable, or is the 
reasonableness ours? 



666 VANNEVAR BUSH [October, 

Is there any real use or meaning to some of the bizarre equa­
tions that can be solved? Certainly the functional equation 
crops up, although it is sparingly used in physical problems. 

Entirely aside from this speculation, there is one influence 
which is undoubtedly coming, if equation-solvers become as 
fully developed and as rapid, reliable, and versatile as the arith­
metical machines of commerce. Formal attention will be less 
directed to the mere solution of equations, in order that they 
may thus be rendered useful ; and will hence be more directed 
to their formulation and interpretation. 

I t is to be hoped, as well, that formal attention will be di­
rected to the machines themselves. There are many fascinating 
problems involved, many of them much too mathematical for 
those who are engaged in the detailed machine developments. 
An important query is the question of what sort of machines are 
really worth developing. This involves the mathematician fully 
as much as the user of the results. 

My mathematical friends exclaim over the ingenuity of the 
formalist in inventing new methods of construction for use in 
existence proofs. Perhaps photo-cells might be of service. 

We are in an age of complex instruments. Out of it will come 
devices that will revolutionize the use of mathematics, and will 
profoundly influence some branches of mathematics itself. This 
process is now beginning, and it is probable that the next decade 
will see important advances. 
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