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ON T H E COMPLETENESS OF LAMBERT 
FUNCTIONS* 

BY EINAR HILLE AND OTTO SZASZ 

1. Introduction. In the theory of Lambert series one encoun­
ters the following two sets of functions 

(1 - t)tn (1 - t)Hn 

Si'. ) and S2' y (n = 1, 2, 3, • • • ) . 
1 - tn (1 - tn)2 

Both sets evidently belong to the spaces Z,p(0, 1), p^ 1, and to 
C[0, l ] , the space of functions continuous in the closed interval 
[O, l ] , but nothing definite seems to be known about their clo­
sure properties in these various spaces. Wiener's work on the 
Lambert-Tauber theorem f suggests that they are complete in 
Li(0, 1). On the other hand, a direct elementary proof of this fact 
would form a first step towards a simple proof of his theorem. 

In the present note we shall prove completeness in Lp(0, 1), 
p ̂  1, of sets of functions of the type 

S(a,p,\n): (1 - / ) « E ^ m X " , ( » = 1 ,2 ,3 , • • • ) , 
m = l 

under suitable restrictions on the parameters. It will turn out 
in particular that the sets Si and S2 are complete in any Le-
besgue space. The adjunction of /ö(/) = 1 to S(a, /3, Xn) leads to 
sets complete in C[0, l ] , but the sets Si and 52 turn out to be 
border-line cases in the discussion, and we are not able at pres­
ent to prove that they can be made complete by this device. 

The analysis is capable of very considerable extension. Thus 
we could replace the factor (1 — t)a by more general multipliers. 
A more interesting situation is encountered if we replace the 
coefficients rn& by quantities cm such that ci = l, \cm\ SMnt1*, 
m > l . Owing to the number theoretic features of the problem, 
which are introduced by the inversion formula of Möbius, this 

* Presented to the Society, February 29, 1936. 
t See Annals of Mathematics, (2), vol. 33 (1932), pp. 1-100, especially 

pp. 39-43, and his book, The Fourier Integral, 1933, pp. 112-124. 
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slight change in the assumptions affects the analysis strikingly. 
This more general problem will be treated in a later paper. 

2. Completeness in Zi(0, 1). We start with the case p = l, 
which leads to the following theorem. 

THEOREM 1. Let 

00 

kp(w) = Ylm^wm
) ( | w\ < 1). 

Let a > m a x (/3, —1). Let {Xn} be a set of complex numbers such 
that (i) VICK*) ^ Ô > 0 , and (ii) J^^M1 An) = + °°. Then the set 

S(a, 0, X»): (1 - t)"kfi(M, (» = 1, 2, 3, • • • ) , 

is complete in £i(0, 1). 

PROOF. A set of functions /»(/)eii(0, 1) is complete in this 
space if and only if the only bounded measurable function g(t) 
satisfying 

f fn(t)g(t)dt = 0, (» = 1, 2, 3, • •• ) , 
J o 

is g ( / ) ^ 0 . Let us apply this criterion to the set S(a, 0, X»). Let 
z = x+iy, and form the function 

(1) F(z) = f *„(*«)(1 - /)-g(0<« 
^ 0 

f o r * > 0 . I f |$( /) | :g£, 

|F(a)| ^ g f W ( l - / )«*. 
•^ 0 

If j 8 < - l , kp(u) is bounded for OSu^l. Since c e > - l , | F(z) \ 
is clearly bounded for x ^ O . If j3> — 1, we can find a constant 
Mp such that &0O) S Mp(l-u)-^-1. Hence 

I F(z) I ^ gAf„ f (1 - ^ " ^ ( l - 0 a * 
Jo 

« / - 0 - 1\ r(mx+ 1) 
= ^ r ( « + i ) E ( - i W )_, ' . • 
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The series converges uniformly for x^ 5 > 0 since a>$. Replac­
ing the binomial coefficient by 1/m we obtain a majorant valid 
for the case /3= — 1. Thus in all cases F(z) exists as a holomor-
phic function of z for x>0, bounded for x^ ô > 0 . In particular, 
it follows that the set S(a, /3, Xn) belongs to £i(0, 1) since we can 
takeg(/) = 1, z=\n. 

Now suppose the existence of a g(t) such that for the corre­
sponding function F(z) we have F(kn)=0, (w = l, 2, 3, • • • )> 
where the Xn satisfy conditions (i) and (ii). Since F(z) is bounded 
and holomorphic in a half-plane, it must vanish identically 
by the well known analog of Blaschke's theorem. Moreover, we 
know that condition (ii) is necessary as well as sufficient for this 
conclusion as long as we are dealing with a bounded function 
whose zeros satisfy (i). 

But F(z) is the transform of the function (1 — t)ag(t) by the 
kernel k$(tz). Thus the problem is reduced to the question of 
whether the vanishing of the transform implies the vanishing 
of the transformed almost everywhere. Or is it possible that such 
a transformation can admit of a non-trivial representation of 
zero? This question seems difficult to answer one way or the 
other if no restrictions are put upon the transformed function 
except the obvious requirement that the transform shall exist 
as an analytic function in some right half-plane. But we are 
limited to a particular class of functions, namely, those of the 
form (1 — t)ag(t), where a > m a x (j8, — 1) and g{i) is bounded, and 
for this class it turns out that the representations of zero are 
trivial. 

Put 

t = e~u, 

Then 

(2) 

or 

(3) 

kn{t*) = Kff(uz), (i - 0 - « w / = G ( « ) . 
du 

Kp{uz)G{u)duy 
n 

F(z) — lil wPL(mz). 
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Here L(z) is the Laplace transform of G(u), that is 

e~uzG(u)du, 
o 

or in terms of the old variables 

(5) L(z) = f / ' ( l - t)"g(t)dt. 
J o 

The last formula shows that 

(6) |zool g; gr(« + i) r (* + *} , (*>o). 
r(# + « + 2) 

We can interpret (3) as a functional equation for the deter­
mination of L(z) in terms of F(z), where the solution is to satisfy 
(6). The solution is given by the special inversion formula of 
Möbius* 

00 

(7) L{z) = 2 ( I ( » ) # ( M ) , 

where fi(n) is the factor of Möbius, that is, 

M(1) = l, MW = o 
if n has a quadratic factor, and 

MW = ( - 1 ) * 

if n is the product of k distinct primes. In order to prove (7) 
rigorously, suppose that (3) is satisfied by a function L(z), 
holomorphic in x > 0 , such that (6) holds for some choice of the 
constant g and a >max (/3, —1). Then the double series 

00 00 

(8) X) S {mnyUmnz) 

is clearly absolutely convergent for x > 0 . Hence, if we multiply 
the equation 

00 

^2 nt^L(mnz) = F(nz), (n = 1, 2, 3, • • • ) , 

* A. F . Möbius, Journal für die reine und angewandte Mathematik, vol. 9 
(1832), pp. 105-123, and Gesammelte Werke, vol. IV, pp. 591-612. 
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by fi(n)nfi and add the results, the series so obtained is abso­
lutely convergent, and can be rearranged at pleasure. Thus 

00 00 00 

y^ lx(n)nPF(nz) = ^Z M W Z (nmyL(nmz) 
n=*l n = l ra=l 

00 

= £ *"£(**)£/*(<*), 
k= 1 <21 & 

where the last sum extends over the divisors of k. It is well 
known that this sum is zero unless k = l, when it equals one. 
Thus the double series reduces to a single term L(z). This argu­
ment* proves that (7) gives the only solution L(z) of (3) satisfy­
ing (6). In particular, if F(z)=0 and L(z) satisfies (6), then 
L(z)=0. But this implies G(u)=0 almost everywhere, so that 
g(i)~0. This completes the proof of Theorem 1. 

It should be remarked that if F(z) is defined by (2), that is, 
F{z) is the ^ - t r ans fo rm of a function G(u) of the special form 
considered here, then F(z) is also the unilateral Laplace trans­
form of a function H(u). We have 

/

» 00 

e-™H(u)du, 
0 

(10) H(u) = Y,nif*-Ki(—\. 
m=i \ ml 

The last equation can also be regarded as a functional equation 
for the determination of G(u) in terms of H(u). Möbius' inver­
sion formula applies, and gives 

00 

(11) G(u) = J2fx(n)n^H 

as the only solution of (10) which is 0(u") for small values of u. 
In particular, if H{u)~0, and G(u) is known to be 0(ua)} then 
G(u)~0. Thus we have an automorphism between the theories 
of the two functional equations (3) and (10), as is to be ex­
pected a priori. 

* See a similar argument by H. von Koch, Öfversigt af Kongliga Svenska 
Vetenskaps-Akademiens Förhandlingar, Stockholm, 1900, No. 5, pp. 659-668. 
Our functional equation could have been reduced to the system of linear equa­
tions in infinitely many unknowns treated by von Koch. 

7 
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3. Other Spaces. Similar results hold in Lp(0, 1), p> 1. 

THEOREM 2. The set S(a, /3, Xn) is complete in Lp(0, 1), 
( 1 < £ < O O ) , if a > m a x (0 + 1 - l / £ , - l / £ ) , and $R(Xn)^S>0, 
Eli«dA»)-+«>. 

The proof follows the same lines as in the case p = 1, the main 
difference being that g(t) is now an arbitrary function in 
LP '(0, 1), l/p-\-\/p' = 1. The necessary estimates are obtained 
from Holder's inequality. In particular, (6) has to be replaced 
by 

. r v(px + l) n1/p 

(12) \L(z) \^C — - ^ — , (*>(>) , 
LT(px + pa + 2)A 

but the inversion formula (7) is still valid, and gives the only 
solution of (3) satisfying (12). 

In order that S (a, j8, Xn) be in C[0, l ] it is necessary and suffi­
cient that a ^ m a x (/3 + 1, 0), 9t(Xn) > 0 . But this set of functions 
can never be complete in C[0, l ] because they all vanish at / = 0, 
and at / = 1 if a>0. This deficiency can be overcome by joining 
fo(t) = 1 to the set. In this way we get the following theorem. 

THEOREM 3. The set 1+S(a, /3, Xn) is complete in C[0, l ] if 
a>max (0 + 1, 0), 9 î (X n )^ô>0 , and 2 ^ 3 1 ( 1 A») = + °° • 

By the theorem of F. Riesz we have to show that the only 
function g(t) of bounded variation in [0, l ] such that 

(13) f fn{t)dg{t) = 0, in =•- 0, 1, 2, - - - ), 
J o 

is a constant. We form 

ƒ' 
J o 

F(Z) = wxi - tydg{t), g(o) = g{\), 
J o 

where the end point condition expresses that (13) is satisfied for 
n = 0. The estimates offer no particular difficulty, and lead to 

(14) | i ( a ) | g C : J ^ ± i L . , (X>0). 
T(x + a + 1) 

Since a > m a x (0 + 1, 0), the inversion formula applies and gives 
the only solution L(z) satisfying (14). In particular, if F(z)=0 
and L(z) satisfies (14), then L(z) = 0, whence 
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(15) A{u) = f " ( l -t)"dg{t) =C, 
J 0 

a constant, at all points of continuity of the integral. Integration 
by parts gives 

(1 - «)"«(«) - g(0) + a f "(1 - O ^ ^ W * = C. 
J 0 

The last term on the left is absolutely continuous, so g(u) must 
be absolutely continuous in every interval O ^ w ^ l — ô. But 
then by (IS) we have g'(u)~Q and g(u)=g(0) for w < l . Since 
g(l)=g(Q) by assumption, we have g(u)=g(Q), O^u^l. This 
completes the proof of Theorem 3. 

The only remaining case of interest in C[0, 1 ] is that in which 
a = max (/3 + 1, 0). If j3< — 1, a = 0, we can still prove complete­
ness of the set l + ^ a , j8, Xw) if the Xn satisfy the conditions 
of Theorem 3. The case /S = — 1, a = 0, is excluded, but for 
fi> — 1, a= /3 + l our method fails. Take the simplest and most 
interesting case a = l, /3 = 0, that is, the set Si with unity ad­
joined. In order to prove the absolute convergence of the double 
series 

00 00 

X S L{mnz) 
m== 1 w= 1 

we obviously need something better than (14). Now it is not 
difficult to prove that 

£ I L(nz) I S f (1 ~ t) —- I dg(t) I, (* > 0 ) . 

For fixed x the multiplier of the integrator is a monotone in­
creasing function of /, whence we conclude that the integral ex­
ists and is 0(1/x). But this is clearly not enough for the conver­
gence of the double series, so we do not know whether or not 
the inversion formula applies. I t is perhaps of some interest to 
remark in this connection that the solution of the functional 
equation 

" l l A M W 
2^L(nz) = — is L(z) = — 2u 
w=i z z n=»i n 

according to the inversion formula. By Landau's theorem the 
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second series is identically zero, so the inversion formula does 
not give an actual solution. Under these circumstances we are 
forced to leave the question of the completeness of Si + 1 in 
C[0, l ] unanswered.* 

YALE UNIVERSITY AND MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

GROUPS OF MOTIONS IN CONFORMALLY 
FLAT SPACES 

BY JACK LEVINE 

1. Introduction. In this paper we consider the problem of de­
termining the conditions which a conformally flat space must 
satisfy in order that it may admit a group of motions. These 
conditions are expressed in Theorem 1. Conformally flat spaces 
admitting simply transitive groups of motions are considered 
in the last section. All summations are from 1 through n unless 
otherwise indicated. 

2. Killing's Equations. The equations for determining the pos­
sible existence of groups of motions in a metric space are known 
as Killing's equations and are given by f 

àgu d£k d£k 

If Vn is conformally flat, there exists a coordinate system in 
which gij = ei8?h2, where e* = ± 1 . In this coordinate system (1) 
reduce to 

(2) ei h ej = 0, (i T^ j , i, j not summed), 
dx3' dxl 

dH df* 
(3) £* 1 = 0, 0' not summed, H = log h). 

dxk dxl 

* The completeness of 1 + 5 ( 0 + 1 , 0, X) in C[0, l ] is proved for - l < / 3 < 2 
in a paper to appear in the Annals of Mathematics. 

t L. P. Eisenhart, Riemannian Geometry, p. 234. 


