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POSTULATES FOR SPECIAL TYPES OF GROUPS 

BY RAYMOND GARVER* 

In defining a special type of group, such as commutative 
group or finite group, one may be content to add a suitable 
postulate, or possibly a number of postulates, describing the 
special property under consideration, to any set of postulates 
for a general group. I t is, however, of interest to pursue the mat­
ter further, to determine whether a simplified set of postulates 
can be set up which will adequately describe the special type. 
A number of investigations of this sort have been made; the 
results of Weber, Huntington, and Hurwitz are especially worthy 
of note, f 

In the present paper I shall use as a basis the three-postulate 
definition of group which I recently presented in this Bulletin.X 
Let there be given a set of elements G(a, b, c, • • • ) and a rule 
of combination, which may be called multiplication, by which 
any two elements, whether they be the same or different, taken 
in a specified order, determine a unique result which may or 
may not be an element of G. This system forms a group if it 
satisfies the following three postulates : 

I. If a, b, c, ab, be, (ab)c, a(bc) are all elements of G, then 
(ab)c = a(bc). 

II . If a and b are elements of G, there exists an element x of G 
such that ax — b. 

I I I . If a and b are elements of G, there exists an element y of G 
such that ya = b. 

The reader will recall that a familiar four-postulate definition 
of group employs these three postulates, and a closure postulate. 
That definition was due to Huntington and Moore and was, in 

* As was reported in this Bulletin, vol. 41, p. 781, the author of this paper 
died on November 7, 1935. He had not seen the proofs of this paper. THE 
EDITORS. 

t Weber, Lehrbuch der Algebra, vol. 2, 1896, pp. 3-4; Huntington, Transac­
tions of this Society, vol. 4 (1903), pp. 27-29, and vol. 6 (1905), pp. 22-24 
and p. 186; Hurwitz, Annals of Mathematics, (2), vol. 8 (1907), p. 94, and 
vol. 15 (1913), pp. 93-94. 

Î Vol. 40 (1934), pp. 698-701. 
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turn, a simplification of Weber's set of eight postulates. I t was 
of considerable interest to find that closure could be deduced 
from I, II , and I I I . 

The questions which I wish to consider may now be outlined 
as follows. Let us write two more postulates: 

IV. The number of elements of G is finite. 
V. If a, b, ab, ba are all elements of G, then ab = ba. 

We can clearly use postulates I, II , I I I , and IV to define a 
finite group, and postulates 1, 11,111, and V to define a commuta­
tive group. But is it now possible, in either case, to effect a 
simplification? I find that it is; in the case of the finite group a 
rather considerable part of one postulate proves to be redun­
dant, while in the case of the commutative group three postu­
lates may be combined to form one. 

Let us first take up the case of the finite group. Consider the 
following postulate : 

I I I ' . There exists an element g of G such that, if b is an element 
of G} there exists an element y o f G such that yg = b. 

I shall prove that I, II , I I I ' , and IVdefine a finite group. That 
this is really a substantial saving seems to follow from the fact 
that III postulates the solvability, in G, of n2 equations, where 
n is the number of elements of G, while I I I ' postulates the solv­
ability of but n equations of the same form. 

The proof will consist in deducing the closure property* 
from I, I I , I I I ' , and IV, in fact, from II and IV only, and in 
then deducing III from I, I I , I I I ' , IV, and closure. Note first 
that the deduction of closure from I, II , and I I I , as given in my 
earlier Bulletin paper, fails to carry through if we are working 
from I, II , and I I I ' . However, a simple derivation can be ob­
tained from II and IV. Consider the multiplication table of the 
group to be arranged as follows : 

a 

b 

a 

Pi 

pz 

b • •• 

pi • • • 

p.<::: 

* If a and b are elements of G, the product db is an element of G. 



1936.] POSTULATES FOR GROUPS 127 

Thus, aa — px, ab=p2, • • • . By IV, the body of the table has n 
rows and n columns, but we do not know whether the products 
Pu p2> * ' * occurring there are elements of G. Assume that the 
element a of postulate II is temporarily fixed; say it is the a of 
the table above. Then postulate II says, in effect, that no mat­
ter what element b is, it will be found somewhere in the first row 
of the body of the table. In other words, the n places in the first 
row must be filled by the n elements in some order, and closure 
is satisfied as far as this first row is concerned. But the same 
argument shows that the n places in each row of the multiplica­
tion table must be filled by the n elements in some order, and 
closure is established. Obviously this simple argument is not 
valid when the number of elements is infinite. 

We next require two lemmas. 

LEMMA 1. If e,f, and g are elements of G (g possessing the 
property described in III') such that eg =fg, then e =ƒ. 

For otherwise the product yg, as y represents in turn the n 
elements of G, assumes fewer than n distinct values. But this 
clearly contradicts postulate I I I ' . 

LEMMA 2. If e, ƒ, and d are elements of G such that ed =fd, then 

By II , there exists an element x such that dx = g, where g is an 
element possessing the property of I I I ' . From èd—fd, we have 
{ed)x — {fd)x. By closure and I we may write e(dx) =f(dx), or 
eg=fg- By Lemma 1, e=f. 

We have finally to exhibit an element y which will satisfy III 
for an arbitrary choice of a and b. By II , there exists an element 
z such that az — g, where g again is an element of the type 
postulated in I I I ' . By closure and I I I ' , there is an element y 
satisfying the equation yg = bz. For this y we then have y{az) 
= bz, or (ya)z = bz. I t follows from Lemma 2 that ya = b, and the 
deduction of III is complete. 

It seems worth-while mentioning that a similar line of reason­
ing may be used to effect a simplification in Weber's set of postu­
lates for finite groups. He employs closure, our postulates I 
and IV, and the following postulates. 

VI. If d, ey and ƒ are elements of G such that ed =fd, then e =ƒ. 
VII. If d, e, and f are elements of G such that de = df} then e=f. 
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Postulate VI has appeared in this paper as Lemma 2. We may 
replace it by the following one. 

VI ' . There exists an element g such that eg =fg implies e =ƒ. 

Closure and VII imply II , while closure and VI ' imply I I I ' 
Hence closure, I, IV, VI ' , and VII define a finite group. Closure 
cannot be dispensed with in this set of postulates. 

Passing now to commutative groups I find that, instead of 
using I, II , I II , and V, we need only I and the following postu­
late. 

VIII . If a and b are elements of G, there exists an element x of 
G such that ax~xa — b. 

First, note that II and III are satisfied. To obtain V, we em­
ploy VIII and I and find ab=a(xa) = (ax)a = ba. 

For purposes of comparison, I may add that Huntington's 
main definition of commutative group* employs a strengthened 
associative postulate, our postulate II , and a strengthened 
commutative postulate. His strengthened forms of I and V 
are as follows : 

I ' . If a, b, c, aby be, a(bc) are all elements of G, then (ab)c 
= a(bc). 

V'. If a, b, ba are all elements of G, then ab = ba. 

These are stronger than I and V, respectively, because their 
hypotheses are of wider range than those of I and V, while 
their conclusions are the same, respectively. 

I t is easy to show, on the basis of my Bulletin paper already 
referred to, that I may be substituted in Huntington's defini­
tion for I ' . For if a and b are any two elements of G, there is an 
element x such that ax = b, by II . By V', xa = ax = b. Hence III 
is satisfied, and I, II , I II , and V' are certainly sufficient to 
define a commutative group. An interesting question remaining 
is whether the set of postulates I, II , and V' may be replaced by 
I, II , and V. I have a feeling that this simplification is not pos­
sible, but I cannot give a proof at the present time. The reader 
will note, however, that I I I can no longer be deduced from II 
and V as it could from II and V'. 

* Transactions of this Society, vol. 4 (1903), pp. 27-29. 
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Hurwitz' definition of commutative group employs two postu­
lates;* the reader will find it interesting to compare with that 
of the present paper. 

UNIVERSITY OF CALIFORNIA AT L O S ANGELES 

ON SOME QUADRATURE FORMULAS AND ON 
ALLIED THEOREMS ON TRIGONOMETRIC 

POLYNOMIALS 

BY J. GERONIMUS 

1. Introduction. We consider the following problem. 

Find In numbers O ^ 0 i < 0 2 < * • • <S2n-i <#2n < 2TT such that 
for every trigonometric polynomial 

n-l 

(1) G(fi) = a» + 2 { « * c o s (» - k)d + Pk sin O - k)d) 

of order ^ n the equality 

(2) f TF(d)G(d)dd = L \ Ê G ( ö « - i ) - E G ( y } 

holds true, where F(0) is the given function 
00 

(3) F(6) = £ (Ak cos k6 + Bk sin k$), (s g (» - l ) /2 ) , 
/b=n—s 

awd L is 0 given positive number. 

Let 

^n(0) = X) {̂ fc cos £0 + £* sin W} , 
Jc—n—s 

/

2n 

Fn(d)dd, G*(d) = const. I l s i n 

7 c = l 

Then, integrating (2), we get 

* For references, see the first footnote to this paper. 


