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SOME THEOREMS ON TENSOR DIFFERENTIAL
INVARIANTS

BY JACK LEVINE

1. Introduction. In the theory of algebraic invariants there is
a theorem which states that if an absolute invariant be written
as the quotient of two relatively prime polynomials, then the
numerator and denominator are relative invariants.* If we con-
sider absolute scalar differential invariants of a metric (or affine)
space, then it is possible to prove a similar theorem regarding
them. In the course of the proof we give a new proof of the fact
that in a relation of the form (2) the ¢ must be a power of
the Jacobian of the coordinate transformation. (In the alge-
braic theory the u,’ are of course constants.) This proof involves
the use of the differential equations satisfied by the scalar.t In
this proof it is not necessary to restrict B and ¢ to be poly-
nomials in their arguments as is done in the usual proof of the
corresponding theorem in the invariant theory. It is sufficient
to assume that ¢ possesses first derivatives with respect to the
#; and that B(g) is an analytic function of € in the neighbor-
hood of e=0. We also extend the theorem to the case of tensor
differential invariants of the form (5).

2. Scalar Differential Invariants. We consider the differential
invariants of a metric space V, with a quadratic form g;dxidx’.

Let
0g:j 97gi; >
Al iy —2 oo — 2
(g,, oxt ’ O L LI P

be an absolute scalar invariant of V, which we take to be ra-
tional in its arguments. We can then write 4 in terms of the
gi; and their extensions g;j,x...;, and we have

_ B(gij; 05 gijori; * -+ )
C(gii; 05 gijri; * -+ )

A(gis; 05 gagoea; - -+ )

)

* See, for example, H. W. Turnbull, The Theory of Determinants, Matrices,
and Invariants, p. 277.

1 T.Y. Thomas and A. D. Michal, Differential invariants of relative quadratic
differential forms, Annals of Mathematics, vol. 28 (1927), p. 679.
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where B and C are polynomials in the g;; and their extensions.
We may assume that B and C have no common factor. Now

B(gij;-++) B -+)
= )
C(gisz~++) C(giss---)
under an arbitrary coordinate transformation x—&, the barred

g’s being the g’s in the (%) coordinate system. It is easily shown
we must have*

(2) B(gij; - -+ ) = ¢(us)B(gis; - -+ ),
3) C(gijs - -+ ) = ¢(us)C(gis; - -+ ),
where uj =0x%/9x® and ¢ is a polynomial in the #'s. We now
prove ¢ is a power of | dx/ 692, , thus showing B and C are relative

scalars.
Write (2) in the form

B(g)¢~! = B(y),
and consider the infinitesimal transformation

xt = %t + ().

(1)

We have

()~ Go) (D7 - G5
de Jemo  \Oui)eo\de /o \Oui/)umy owi

As ¢ is a polynomial, so also is ¢/du, and on evaluating this
last expression at =0, we obtain a set of constants %}, so that

<d¢_‘) B! oF¢
de e.,o_ ' ox?

Proceeding then as in the paper by Thomas and Michal, page
679, we obtain the differential equations satisfied by B in the
form

(4) X.(p)B = k.B.

Now for any function G we havet
t

(X1, Xn)G = 6,.X,G — 8. X0G,

* H. W. Turnbull, loc. cit.
1 Thomas and Michal, loc. cit., p. 663.
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and, in particular, for B we would have
(Xe, Xo)B = 6nXoB — 8,XnB = B(omks — dikm).
But also
(X', Xo)B = Xi(kuB) — X(kiB) = B(kwks — kukw) = 0,
so that
Bunks — Sukm = 0,

from which follows &} =E8), where k is a constant. Substituting
in (4) we find that B is a relative scalar of weight 2 and*
o= Iax/aa'c[k. Similar results hold for C also. As stated in §1 we
can prove a generalization of this result which we state as fol-
lows.

THEOREM 1. Given a function

Bl i . I
§iss xk’ Toxk .- - 9xt)’

with the law of transformation

_ 97g:; o 97gi;
B(&'i: SR m) = ¢(u3)B (gii; RN m),

where ¢ possesses first derivatives in the u's and B(g) is analytic
in the neighborhood of e=0. Then ¢ is a power of the Jacobian and
B is a relative scalar differential invariant.

3. Tensor Differential Invariants. Consider the absolute ten-
sor differential invariant with components of the form

ac++b
® it o Qi g ),

D(gkl; e )

where the U’s and D are polynomials (with no common factor)
in their arguments. Corresponding to (1) in the scalar case we
have

ULl @ue - D) Qe w)

(6) -
U'rg Wt - ud D'(g,uw)  Pg, w)

* Thomas and Michal, loc. cit.
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(P, Q having no common factor), where the primed U's and D
represent the result of replacing the barred g’s by their values
in terms of the g’s and #’s in the expressions U (g) and D(g)

From (6) we see that Q is a factor of D and of U;.. - uj,
and hence must be a function Q’(g), so that

W) UL (@ue - ui = Q@Vi g, w),

(8) D(g) = Q'(g)R(g).

In (7) put uf = 8}; then

©) UL le) = Q@Vi (g, 9).

Hence Q’(g) =const., since D and the U’s have no common fac-
tor. Since D(g) and D’(g, u) are of the same degree in the g's,
it then follows from (6) that P(g, ) =P’'(u), so that

D(@) = o(u:)D(g).

Hence as proved in the previous section for B, we have shown
that D is a relative scalar of weight k, and therefore v ,- are the
components of a relative tensor of weight k. We can also prove
the following theorem.

THEOREM 2. If the set of quantities

feerd 0?8
T < ..... ____>
§xt; T gxm ...

have the transformation law
oot % i d eeed b
Toliiw(@rr; -+ Yt -+ the = $(te) Tamers(grt; * + Vb * * * thu,
then ¢ is a power of | ax/axl and the T's are components of a rela-

tive tensor invariant, it being assumed that ¢ possesses first deriva-
tives in the u's, and T(g) are analytic in the neighborhood of € =0.

The proof is similar to that used for B of the previous sec-
tion. Similar results to those obtained for metric scalar and ten-
sor differential invariants hold for affine invariants.
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