
1935-1 TENSOR DIFFERENTIAL INVARIANTS 679 

SOME T H E O R E M S ON TENSOR D I F F E R E N T I A L 
INVARIANTS 

BY JACK LEVINE 

1. Introduction. In the theory of algebraic invariants there is 
a theorem which states that if an absolute invariant be written 
as the quotient of two relatively prime polynomials, then the 
numerator and denominator are relative invariants.* If we con­
sider absolute scalar differential invariants of a metric (or affine) 
space, then it is possible to prove a similar theorem regarding 
them. In the course of the proof we give a new proof of the fact 
that in a relation of the form (2) the $ must be a power of 
the Jacobian of the coordinate transformation. (In the alge­
braic theory the u) are of course constants.) This proof involves 
the use of the differential equations satisfied by the scalar, f In 
this proof it is not necessary to restrict B and </> to be poly­
nomials in their arguments as is done in the usual proof of the 
corresponding theorem in the invariant theory. It is sufficient 
to assume that <f> possesses first derivatives with respect to the 
u) and that B(g) is an analytic function of e in the neighbor­
hood of € = 0. We also extend the theorem to the case of tensor 
differential invariants of the form (5). 

2. Scalar Differential Invariants. We consider the differential 
invariants of a metric space Vn with a quadratic form gijdxldxK 
Let 

A( ... ^L.. dPgiJ' \ 
\ g i h dxk ' ' " ' dxk • • • dxl) 

be an absolute scalar invariant of Vn which we take to be ra­
tional in its arguments. We can then write A in terms of the 
ga and their extensions gij,k-- -i, and we have 

Af N B{gij\ 0; gijtki; • • • ) 
A(ga; 0; gij>ki; . . . ) • = — - , 

Hgu; 0; gij,ki; • • • ) 

* See, for example, H. W. Turnbull, The Theory of Determinants, Matrices, 
and Invariants, p . 277. 

t T . Y. Thomas and A. D . Michal, Differential invariants of relative quadratic 
differential forms, Annals of Mathematics, vol. 28 (1927), p . 679. 



680 JACK LEVINE [October, 

where B and C are polynomials in the gij and their extensions. 
We may assume that B and C have no common factor. Now 

B(ga;-- ) Bdi,;--) 
(1) = y 

C(gij', • • * ) C(ga; ' ' ' ) 

under an arbitrary coordinate transformation x—>#, the barred 
g's being the g's in the (x) coordinate system. It is easily shown 
we must have* 

(2) Bfor,- • • ) =*(«ï)£(ft,;- ' ' ), 
(3) C(gij; • • • ) = <l>(ua

b)C(gij) • • • ) , 

where ul = dxa/dxb and 0 is a polynomial in the «'s. We now 
prove <t> is a power of | d#/d# | , thus showing B and C are relative 
scalars. 

Write (2) in the form 

B(z)4r* = B{g)> 

and consider the infinitesimal transformation 

X
i = x* + €$*(#). 

We have 

\ de /c==0 \duy€=s0 \ de /€==0 \du)J(s=0 dx> 

As 0 is a polynomial, so also is d<f>/duf, and on evaluating this 

last expression at e = 0, we obtain a set of constants k{, so that 

Proceeding then as in the paper by Thomas and Michal, page 
679, we obtain the differential equations satisfied by B in the 
form 

(4) Xl
8(p)B = k\B. 

Now for any function G we have f 

(X8i Xm)G = 6mXaG — dsXmG, 

* H. W. Turnbull, loc. cit. 
t Thomas and Michal, loc. cit., p. 663. 
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and, in particular, for B we would have 

(X8, Xm)B = ömX8B — ö8XmB = B(ômka — ôakm). 

But also 

(Xl, Xl
m)B = x[(kl

mB) - xlik'sB) = B(kl
mkl - Ùl) = 0, 

so that 

from which follows k^kô^ where k is a constant. Substituting 
in (4) we find that B is a relative scalar of weight k and* 
<t> = | dx/dx | *. Similar results hold for C also. As stated in §1 we 
can prove a generalization of this result which we state as fol­
lows. 

THEOREM 1. Given a function 

( dgU dpgii \ 

\gi3'' dx*'"' ' ^ . . . ^ 

with the law of transformation 

*(*'; ' ' ' ; eJPg.\,) = * < " ö * ( ™ ••' dJ
V.gii.dx)> 

where <j> possesses first derivatives in the u's and B(g) is analytic 
in the neighborhood of e = 0. Then <f> is a power of the Jacobian and 
B is a relative scalar differential invariant. 

3. Tensor Differential Invariants. Consider the absolute ten­
sor differential invariant with components of the form 

/ C N rr,a'"h Ui~-j(f>kï, gkl,mq'y ' ' ' ) 
(5) Ti...j = — , 

D(gki; • • • ) 

where the C/'s and D are polynomials (with no common factor) 
in their arguments. Corresponding to (1) in the scalar case we 
have 

Ui'''j(g)uk • • • ul D(g) Q(g, u) 
(6) = = y 

u'z;:?{g, u)ua
m---ui D>(g,u) p(g,u) 

* Thomas and Michal, loc. cit. 
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(P, Q having no common factor), where the primed U's and D 
represent the result of replacing the barred g's by their values 
in terms of the g's and u's in the expressions U---(g) and D(g). 
From (6) we see that Q is a factor of D and of Ui'.'.'.bjul • • • #{, 
and hence must be a function Q'{g)y so that 

(7) Ul..j(g)uk • • • ul = Qf(g)Vl.\.i(g, u), 

(8) D(g)=Q\g)R{g). 

In (7) put « / = « / ; then 

(9) £C:fo) - ewr . i fo ,* ) . 
Hence (?'(g) = const., since Z> and the U's have no common fac­
tor. Since D(g) and Df(g, u) are of the same degree in the g's, 
it then follows from (6) that P(g, u)=P'(u), so that 

D(S) =<t>(u))D{g). 

Hence as proved in the previous section for B, we have shown 
that D is a relative scalar of weight k, and therefore U*Y.\) (ire the 
components of a relative tensor of weight k. We can also prove 
the following theorem. 

THEOREM 2. If the set of quantities 

i a . . .b i gki] - • • ; — — ) 
\ dxm • • . dxr/ 

have the transformation law 

Tv...w{gki; • • • )u8 • • • ut = <j>(ue)Ta...b\gki) - • ')uv - • • uW9 

then 0 is a power of \ dx/dx\ and the T's are components of a rela­
tive tensor invariant, it being assumed that <j> possesses first deriva­
tives in the u's, and T(g) are analytic in the neighborhood of e = 0. 

The proof is similar to that used for B of the previous sec­
tion. Similar results to those obtained for metric scalar and ten­
sor differential invariants hold for affine invariants. 
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