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ON T H E SINGULARITIES OF AN 
ANALYTIC FUNCTION* 

BY E. W. MILLER 

1. Introduction. We shall consider an analytic function f(z) 
represented by the series ^L,n=$anz

n whose circle of convergence 
we shall suppose for simplicity to be the unit circle with center 
at the origin of the complex plane. Our purpose is to give simple 
generalizations of certain theorems of Pringsheim and Hada-
mard relative to the singularities olf{z) on C, the circumference 
of the circle of convergence. 

With the present hypotheses and notation the theorems in 
question may be formulated as follows: 

THEOREM OF PRINGSHEIM. f In order that z = 1 be a simple pole 
of f(z) and that there be no further singularity of f{z) on C it is 
necessary and sufficient that 

lim I an+i — an | < 1. 
n—>oo 

THEOREM OF HADAMARD. J In order that there be just one simple 
pole and no further singularity of f{z) on C it is necessary and 
sufficient that 

lim | ai — an-itfn+i | < 1. 
n—>«> 

2. Generalizations of the Above Theorems. We shall first estab­
lish a generalization of Pringsheim's theorem. 

THEOREM 1. In order that z = 1 be a pole of order m of f{z) and 
that there be no further singularity of f{z) on C it is necessary and 
sufficient that there exist a polynomial g{x) of degree m — 1 such 
that, if we put An = an/g(n), we have 

Hm | An+i — An\
 n < 1. 

* Presented to the Society, April 20, 1935. 
t A. Pringsheim, Vorlesungen ilber Zahlen- und Funktionenlehre, vol. 2, part 

2, 2d éd., 1932, p . 916. 
% See, for instance, P . Dienes, The Taylor Series, p . 333. 
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PROOF. Suppose that z = 1 is a pole of order m of f(z) and that 
there is no further singularity of ƒ(z) on C. Then f(z) =fi(z) 
+/2(A)> where fi(z) has 2 = 1 as a pole of order m and has no 
other singularity in the complex plane, and where /2(z) has no 
singularity within or on C. According to a theorem of Leau and 
Wigert* there is a polynomial g(x) of degree m — 1 such that 
fi(z) =^2n=ag(n)zn. We choose this as the polynomial g(x) of 
Theorem 1. We have then an = g(n) + bny where jim^oo | bn 1

1/w < 1. 
Hence An=l+Bn} where Bn = bn/g(n). Clearly limnH>00|j5w|1/w<,l. 
I t follows at once that l im^^|^4w + i—An \ 1 / w < l . 

To prove the condition sufficient we notice that by the theo­
rem of Pringsheim cited above ^n^Anz

n has 2 = 1 as a simple 
pole and has no further singularity on C. Thus 

oo oo oo 

]TA n z n = kX zn + ]C cn*n, where ÏÏïn \ cn\ " < 1. 

Therefore 
00 00 00 00 

]C <WW = X gOMnSn = #]T gO)zw + 2 g(»K*n. 

Now by the Leau-Wigert theorem^n=og(n)zn has 2 = 1 as a pole 
of order m and has no other singularity in the complex plane. 
Furthermore lim^^l g(n)cn |1/w < 1. Hence ^n^oanz

n has 2 = 1 as 
a pole of order m and has no further singularity on C. 

In case the type of pole is specified it may be easy to deter­
mine the polynomial g(x). For example, suppose we have 
f(z) = (k/(l— z)m) + F(z), where the Maclaurin series for F(z) 
has a radius of convergence > 1. Since 

1 °° 
1/(1-*)™ = - r r ; Z 0 + ^ - 1 ) * • • (n + l)zn, 

\m — \)\ n=o 
we may put g(n) = (k/(m — 1)!) (n+m — 1) • • • (n + 1). After 
simplification our condition that ƒ (z) be of the above described 
type assumes the form 

lïm | O + m)an — (n + l)an+i |1 / n < 1. 
«-+00 

That this condition is not merely necessary but also sufficient 
follows easily once we put an = (n+tn — l) • • • (n + 1) kn-

* See, for instance, Dienes, loc. cit., pp. 337-339. 
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The theorem of Hadamard cited in (1) is susceptible of a simi­
lar generalization. 

THEOREM 2. In order that there be just one pole of order m and 
no further singularity of f{z) on C it is necessary and sufficient that 
there exist a polynomial g{x) of degree m — \ such that if we put 
An = an/g(n), then 

lim | A* - An-iAn+i\ n < 1. 

PROOF. Suppose there is a pole of order m and no further 
singularity of ƒ(z) on C, Let this be the point z = b. If we put 
z = bw, the series^2^oanbnwn will have w = 1 as a pole of order m 
and will have no other singularity on the circumference of the 
circle of convergence. Accordingly there exists a polynomial g(x) 
of degree m — 1 such that anb

n = g(n)+Cn , where l i m ^ ^ c / |1/w 

< 1 . Hence An = (\/bn) + cn, where lim^^l cn\
 1 / n < l . The condi­

tion of our theorem now follows easily. 
That the condition is sufficient follows by an argument simi­

lar to that used in the proof of the sufficiency of the condition 
in Theorem 1. 

Again, it is easy to show that ƒ (z) = (k/(a — z)m) + F(z), where 
| a | == 1 and where the Maclaurin series for F(z) has a radius of 
convergence > 1, if and only if 

lim | n{n + ni)a£ — (n + l)(n + m — l)an-ian+i \ < 1. 
n—>oo 

3. A Theorem on Limits. The most important step in the proof 
of PringsheinVs theorem is to show that , under the conditions 
of the theorem, limn+00an+i/an = 1. In our generalization of this 
theorem it may be noticed that we have 

P - I «(» + 1) 
l im an+i - — - — an 

n—•<» 

1/n 

< 1 

and that again \imn^an+\/an = 1. These facts suggest the follow­
ing theorem on limits. 

THEOREM 3. If îîmw^00|an|1/w = l, in order that limn^an^i/an 

= 1, it is necessary and sufficient that there exist a sequence of com­
plex numbers \ n such that 

(1) lim \n = 1; and (2) lim | an+i — Xnan \ < 1. 
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PROOF. The necessity is obvious* We need merely put 
Xw — an+i/an. To prove the sufficiency we notice first that if we 
can prove that limw-*oo| #»|1 /w exists, then limw^00an+i/an:= 1. For 
from (2) it would follow that 

l im \ an I 
0n+l 

\n 

Un 

< 1 , 

and therefore limw^^an+\/an = 1. We shall accordingly prove that 
limn-a, | dn |1/n = 1. There exists a positive number k < 1 such that 
for n sufficiently large | an+i — \nan \ < kn, so that 

| an+i — an | < kn + | en | | an |, 

where limn^oo€w = 0, 

I #n+2 — #n+l I < kn+1 + J €n+x | I an+i | , 

and in general 

I an+j — an-w-i I < knJH~l + I €n+/_ij J an+J-_i [. 

Therefore 
£ n n-|-y—1 

| ön+)- — aw | < + | en | | an I + 22 I <* I I ar I • 
1 A? r=n+l 

Now let us suppose that l im^^ | an |1/n ^ l i m ^ | qn |1/n. We 
can find a and ]8 such that k </3 < 1 and a </3, and two increasing 
sequences of positive integers {p\ and {g} such that \ap\ >j3p, 
|affj < a a and \an\ ^ / 3 n if w is not a term of the sequence {p}. 
I t is obvious that from {p} and {g} we can select subsequences 
{pi} and {qi} of such a nature that pi<qi and that if pi <n <#;, 
then \an\ ^ / 3 n . We have of course \aPi\ >fiPi and \aqi\ <aqi. 
Accordingly we have |ap* —aff<| > | Ö 3 , < | —aqK On the other hand, 
from our preliminary result we have 

aPi- aq.\ = | aq 
1 A? r=2>«+3-

Therefore 

I aPi ~ aQi I < " ? + ePi aPi + €Pi ; 
1 — * 1—0 

where €pt- denotes the largest of the numbers | er\, (r = ƒ>»+!, 
• • • ,gi — l ) . We now consider the difference 
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[ kPi RPi+1 ~1 

= | aPi | (1 - | €P< | ) - a « - 7 - € ; . -
1 — k 1 — p 

> 0"(1 - I «p, ) - a « - - ePi -
1 — k 1 — /5 

\ ' % ' 0 " 0"(1 - A ) * 1-pJ 

Now for i sufficiently large all the terms within the last paren­
theses except the first are as small as we please. Hence for suffi­
ciently large i the difference in question is positive. From this 
contradiction the theorem follows. 

In conclusion, we may note as a simple corollary of the above 
theorem that if l i m , ^ | an |

1/n = 1, then limn-.oo|fln+i/an| = 1 if 
and only if there exists a sequence of real numbers \ n such that 
limnH>0OX„ = l andïïïn^ool |an+i| - X w | a n | | 1 / n < l . 

T H E UNIVERSITY OF MICHIGAN 

ON T H E COEFFICIENTS OF A TYPICALLY-
REAL FUNCTION* 

BY M. S. ROBERTSONf 

1. Introduction. I t is well known $ that if 
00 

(1) ƒ(*) = Z «»2" 
n=0 

is regular for \z\ ^ 1, and if E is defined by the formula 

(2) E = maximum | <RJ(Zl) - î l / f e ) |, 
| s i l = l * « l = l 

* Presented to the Society, February 23, 1935. 
t National Research Fellow. 
t See E. Landau, Archiv der Mathematik und Physik, (3), vol. 11 (1906), 

pp. 31-36. 


