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NOTE ON NON-ANALYTIC FUNCTIONS* 

I. M. SHEFFER 

In his retiring presidential address before the American 
Mathematical Society (December, 1931), E. R. Hedrick gave a 
resumé of the theory of non-analytic functions of a complex 
variable.f We propose in the present note to establish, with re­
gard to these functions, some elementary properties that do not 
appear in the Hedrick report. (In the course of the work, how­
ever, some properties considered by Hedrick will present them­
selves.) 

Let 

(1) w = u + iv = f(z), z = x + iy, 

where u, v have continuous first partial derivatives in x and y, 
in some plane region ^ . Equation (1) can be expressed as a 
point transformation in the plane: 

(2) T: u = u(x, y), v = v(x, y). 

If ƒ is non-analytic in ^ (as we shall assume throughout), then 
T is not a directly conformai transformation; that is, the magni­
tude and sense of angles are not both preserved under T. Let 
Wi, m2 be (the slopes of) any two directions at a point z = x+iy. 
In general they will transform into directions not forming the 
same angle (magnitude and sense both considered). In fact, the 
following theorem is easily verified by elementary methods. 

THEOREM 1. A necessary and sufficient condition that two dis­
tinct directions mi, m2 at a point z = x+iy transform conformallyX 
under T is that m\ and m2 satisfy the relation 

(3) (G - J)mim2 + F{mx + m2) + ( £ - / ) = 0. 

Here 

* Presented to the Society, April 18, 1930. 
t Non-analytic f unctions of a complex variable, this Bulletin, vol. 39 (1933), 

pp. 75-96. 
| By conformai we shall mean directly conformai. 
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/du\2 /dv\2 v„ v<* w vu 

( — ) + ( — ), F = + 
\dx/ \dx/ 

du du dv dv 

,_„, ,..., dx dy dx dy 
(4) y y 

/du\2 / dv\2 du dv dv du 
G = ( — ) + ( — ), ƒ = 

\dy/ \dy/ dx dy dx dy Among the quantities £ , F, G, J there are some easily estab­
lished identities, of which the following are of use to us: 

(5) J2 = EG-F2, 

(6) 
dv (du dv\ du 

(J-E)- + F(- + - ) + (J-G)- = O, 
dy \dy dx/ dx 
dy \dy 

du /du dv\ dv 
— +F( ) - ( 7 - G ) — 
dy \dx dy/ dx 

/du dv\ 
(7) ( ƒ - £ ) _ + * • _ - _ ) _ ( / _ G ) — = 0. 

\dx dy/ 

A point (x, y) may be such that all angles at the point trans­
form conformally. A (necessary and sufficient) condition for this 
is that the Cauchy-Riemann equations be satisfied at the point : 

du dv dv du 

dx dy dx dy 

We shall consider only such points as do not have the above prop-
erty. 

COROLLARY. With each direction ni\ at z = x+iy, there is asso­
ciated a unique direction m%, which we term the dual direction, such 
that the angle formed by mi, m^ transforms conformally. If mi is 
the dual of mi, then mx is the dual of m^. 

Of the pairs of dual directions mi, m2 at a point, three have 
special significance : self-dual or contact directions (of which there 
are two) and ortho directions.* These are defined as dual direc­
tions which are, respectively, coincident and orthogonal; that is, 
for which, respectively, W2 = Wi, and W2= — 1/mi. Referring to 
(3), we have (on setting m — dyfdx) the following theorem. 

THEOREM 2. The contact directions and the ortho directions are 
defined respectively by 

* The ortho directions are termed principal directions by Hedrick, loc. cit., 
p. 78, and were first found by Tissot. 
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(8) (G - J)dy2 + 2Fdydx + (E - J)dx2 = 0, 

(9) Fdy2 + (E - G)dydx - Fdx2 = 0. 

As (x, y) varies, (8) and (9) define two systems of curves, 
which we may term the system of contact curves and the system* 
of characteristic curves. The discriminant of (9) is non-negative. 

COROLLARY. The characteristic curves form a real orthogonal 
system. 

On the other hand, the contact curves need not be real. In 
fact, the discriminant of (8) is 

K bu bv\2 /bv bu\2l 

dx by) \dx by) J 

COROLLARY. The contact curves are real at (and only at) those 
points (x, y) where J^O. 

The function ƒ (z) being non-analytic, a unique derivative does 
not exist. Rather, in each direction m at a point, there is a unique 
derivative. One of the forms in which it can be written is 

(10) 
dzm (1 + m2) 

f (bu /bu bv\ bv) 
\— +m — + — ) + m2 — V 

L \bx \by bx) by) 
Cbv /bv bu\ bu\ "I 

{bx \by bx/ by) J 

Kasner has shown thatf as m takes on all values, df/dzm traces 
out a circle, termed by Hedrick the Kasner circle for the point 
(#, y). From (10) we obtain % 

\ 1/2 

(E + 2Fm + Gm2) V ' 

bv bu\ 

* For equation (9) and the latter system, see Hedrick, loc. cit., p. 78. 
t Hedrick, loc. cit., pp. 80-81. 
Î See Hedrick, loc. cit., p. 78, for (11). 
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Now from (8), E+2Fm + Gm2 = J(l+m2). Hence we have the 
following theorem. 

(13) 

THEOREM 3. In a contact direction m, 

dz„ 
- I / I 1 ' * -

If we apply the methods of the differential calculus to (11) and 
(12), we obtain the following result. 

THEOREM 4. The extremal values of \df/dzm\ are* in the ortho 
(that is, the principal) directions, and the extremal values of 
amp (df/dzm) are in the contact directions (when these are real). 

Denote the Kasner circle (for a given point (x, y)) by K. From 
the extremal properties of systems (8) and (9) we obtain the 
following theorem. 

THEOREM 5. If O is the origin and Z the center of the Kasner 
circle K, then the line through O and Z cuts K in points which give 
df/dzm in the characteristic directions, and the points of tangency 
of the tangents to Kfrom O (when O is not interior to K) give df/dzm 

in the contact directions. 

From Theorems 3 and 5 we obtain the following corollary. 

COROLLARY. The common length of the tangents] from O to K 
(when they exist) is \ j \ 1 / 2 . 

Let mi, m2 be a pair of dual directions. We may ask where the 
corresponding points df/dzmv df/dzmi lie on K. The answer is 
given by the following theorem. 

THEOREM 6. Let mi, m2 be dual directions. Then the points 
df/dzmfor m =mi , m2 lie (on K) on a line through the origin. Con­
versely, points on K that are concurrent with O correspond to dual 
directions. 

To establish this, let us equate tan {amp(df/dzm)} to a con­
stant k, using (12). This yields the equation 

* See Hedrick, loc. cit., p. 78. 
f See Hedrick, loc. cit., p. 84. 
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T dv dul T /du dv\ /dv duYl 

L dy dyj L \dy dxj \dy dxjj 

[ du dvl 
k = 0 . 

dx dxj 

Denoting the two roots by mx and m2, we have 

Wi + m2 = 
L \dy dx/ \dy dxj J \dy dx/ \dy 

dv du 
k— + — 

dy dy 

m\m2 

du dv 
k 

dx dx 
dv du 

k— + — 
dy dy 

If now we substitute these values in (3), we find, on using (6) 
and (7), that (3) is satisfied identically for all k. Hence the con­
verse is true. But all points of K are thus paired off, and since 
a given direction has but one dual, the first half of the theorem 
is likewise true. 

For all lines through 0, meeting the Kasner circle K in points 
Mi, Mi, the product OM\ • OM2 = constant. That constant must, 
by the Corollary* to Theorem 5, be | / [ . Hence from Theorem 5 
we deduce the next theorem. 

THEOREM 6. If mi, m2 are any two dual directions, then 

df df 
(14) 

dzm, dz, m\ ^^m^ 
= J 

If we set m = tan 0, the Kasner circle can be written para-
metrically as follows:f 

(15) jL = £>(ƒ] + <P[f]e~™, 
(tzm 

* Strictly speaking, the Corollary applies only when 0 is not interior to K ; 
but the result can be shown to be true in all cases, 

t Hedrick, loc. cit., p. 76. 
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where 

(16) 

1 f/du dv\ /dv du\l 

1 r/du dv\ /dv duYl 

TLW~<ty/ \JX dy)}' 
Kasner has termed the quantity V [ƒ], which is the center of the 
circle, the mean derivative of f; and indeed it is an average of 
df/dzm for all points of K. There is a second point, D* [ƒ], which 
we believe may prove of use. It is obtained as follows. If we pair 
off points on K corresponding to dual directions, their (geomet­
ric) mean absolute value is | j \ 1 / 2 (Theorem 6). Such a pair of 
points lie on a line through 0, and if we average, arithmetically, 
the amplitudes (that is, inclinations) of such lines, we obtain 
the amplitude of the line through the center. We may therefore 
consider the quantity 

(17) ©*[ƒ] = | / T V , 

where 

^ r , i Vx - uy 

a = amp£)[/J, t a n a = 
1>X + Vy 

as being, in some sense, an average derivative. A simple reduc­
tion gives us 

2 \ j \ m 

(18) £>*[ƒ] = ^— V[f}. 
J1 (E+G+2J)1'2 u 

£)*[ƒ] is thus defined for all points (x, y), where £ + G + 2 / T ^ 0 . 

Now E + G + 2J = 0 when and only when D[ƒ]=() ; which is to 
say, if and only if the point (x, y) is one at which the transforma­
tion (2) is inversely-conformai. Hence D* [ƒ ] is defined whenever 
the K-circle does not have its center at the origin. And when the 
center is at the origin, ©*[ƒ] is indeterminate. 

PENNSYLVANIA STATE COLLEGE 


