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A FACTORIZATION THEORY FOR POLYNOMIALS 
IN x AND IN FUNCTIONS eax 

BY L. A. M A C C O L L 

1. Introduction. In this note we consider the problem of 
determining all representations of a function of the form 

N 

(1) f(x) = £ QnWe"**, 
n=0 

where the «Ê's are polynomials and the a's are constants, as a 
product of functions of the same form. The case in which the 
<£'s are constants has been discussed by J. F. Ritt.* As would be 
expected, the solution of the general problem possesses some 
features that are rather different from those appearing in the 
special case. 

I t is assumed, of course, that no one of the $'s is identically 
zero, and that if N>0, no two of the a's are equal. The case of 
chief interest is that in which N>0 and in which the $'s have 
no common zero. The discussion will be confined to this case. 
We select those of the a's for which the real parts are least, and 
of the constants so selected (if there be more than one) we select 
the one for which the coefficient of ( —1)1/2 is least. Let the 
constant so selected be denoted by a0. We assume that ao = 0. 
The class of functions of the form (1) satisfying the conditions 
stated in this paragraph will be called C. 

If ƒ(#)> fi(x)y • ' ' t ƒ«(#) are all of the form (1), and if 
fix) ~fi(x) ' ' ' fs(%), we shall say that f(x) is divisible by each 
of the functions ƒ»•(#), and each of the latter functions will be 
called a factor of f(x). A function which is divisible only by 
itself and by functions of the form Aeax, where A and a are 
constants, will be called irreducible. 

2. Reduction to a Problem Concerning Polynomials. Monomial 
factors of f(x) are, in a certain sense, trivial. Henceforth we con­
sider only factors having at least two terms. These factors may 
be taken as belonging to the class C. 

Suppose that the function 

* J. F. Ritt, A factorization theory for functions ^f^xaie01™, Transactions 
of this Society, vol, 29 (1927), pp. 584-596. 
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P 

is a factor oîf(x). Rit t has shown in effect that each /3 is a linear 
combination of the a's with rational coefficients. He has also 
shown the existence of a set of numbers pi, • • • , pq, which are 
linearly independent with respect to rational coefficients, and 
which are such that each a is a linear combination of the p's 
with non-negative integral coefficients. Each (3 is a linear com­
bination of the p's with non-negative rational coefficients. 

Consider a representation of ƒ(#) as a product of factors, 

N S PB 

(2) ƒ(*) = E QnWe*»' = I t I>.p(*)«*"*. 
n = 0 s = l p=*0 

The a's and /3's in this equation are understood to be expressed 
in terms of the p's as explained above. In each <ï> and \£ in (2) 
we replace x by the indeterminate y0, and we replace each func­
tion exp(kpix), where k is a non-negative rational number, by 
yih. Equation (2) is thus replaced by a relation in the y's which 
is easily seen to be an identity. Each of the indeterminates 
yi> ' ' ' *yq c a n D e replaced by a positive integral power of itself 
in such a way that the right-hand member of the relation in 
the y's obtained from (2) becomes a polynomial in the y's. The 
relation thus obtained is an identity. 

We now have a method for factoring ƒ(x). First we express 
the a 's as linear combinations, with non-negative integral coeffi­
cients, of numbers pi, • • • , pq which are linearly independent 
with respect to rational coefficients. In each of the polynomials 
$n we replace x by y0, and we replace exp(pix) by yi, thus ob­
taining a polynomial Q(yo, 3>i, • • • , yq). In this polynomial we 
replace the indeterminates yi, (i>0), in all possible ways by 
positive integral powers of themselves, thus obtaining a family 
of polynomials Q(yo, yi*i, • • • , yq

tq). To each resolution of each 
of these polynomials into factors there corresponds a factoriza­
tion of ƒ (#). All factorizations off(x) are obtained in this way. 

3. The Problem Concerning Polynomials. Because of the con­
ditions that we have imposed on ƒ(x), the polynomial Q has no 
non-constant monomial factor. Let Qi(yo, yi, • • • , yv) be an ir­
reducible factor of Q. We shall consider the question : For which 
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positive integers U is the polynomial Qi(yo, 3>A • • • , yv
tv) re­

ducible? This is a modification of a problem studied by Ritt 
in his paper, and later by E. Gourin, who simplified the proofs 
and obtained stronger results.* The modification lies in the fact 
that, whereas in the problem of Rit t and Gourin all of the varia­
bles enjoy the same status, in our problem we may have one 
variable, 3/0, that is exceptional in that it is not replaceable by 
a power of itself. 

If Qi is independent of yo, we have the case considered by 
Gourin. Henceforth we assume that Qi depends on yo. 

Suppose that Q\ has at least three terms. By Gourin's theory, 
if there exists a set of positive integral t's such that the poly­
nomial Qiiyo**, yitj-, - - - , yv

tv) is reducible, there exists one and 
only one finite aggregate of sets of positive integers 

( 3 ) /10, / l l , ' ' ' j tu] ' ' ' ) tMQ, tjMl9 ' ' ' j IMV 

having the following properties. (1) For each m, the polynomial 
Qi(yotmQ, • • * , yv

tmv) is reducible. (2) If Qi(yo'°» • * • , yv
tp) is 

reducible, there exists in the aggregate (3) one and only one set, 
say tjo, • • • , tjv, such that each ti is an integral multiple of //;, 
say ti — ditji, and the irreducible factors of Qi(yoto

f • • • , yv
tp) 

are obtained by replacing each yi by yf* in the irreducible fac­
tors of Qi(yot3'°, • • • , yv**9). 

If no one of the numbers tmo is unity, there exists no set of 
t's such that Qi(yof yi*1, • • • , yv

tv) is reducible. Now suppose 
that / io = feo= • • • =/Mo = l, and that/W0 7^1 for m>jLt. Then the 
sets 

V*) Hij ' ' ' y *lv') ' * ' J 'julj ' ' ' t *nv 

have the following properties. (1) For each w, l ^ m ^ j u , 
Gi(yo, yitml, • • * , yv

tmv) is reducible. (2) If Qi(y0, 3>i\ • • • , yw'>) 
is reducible, there exists in (4) one and only one set, say 
tji, - - • , //„, such that each U is an integral multiple of //*, say 
/»= Situ, and the irreducible factors of Qi(yo, 3>iS • • • , yv

tv) are 
obtained by replacing 3/1, • • • , yv by yi8i, • • • , yfr, respec­
tively, in the irreducible factors of Qi(yo, yi*b, • • • , y?**'")* The 

* E. Gourin, On irreducible polynomials in several variables which become 
reducible when the variables are replaced by powers of themselves, Transactions 
of this Society, vol. 32 (1930), pp. 485-501. 
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aggregate (4) is the only aggregate of sets having these two 
properties. 

Now suppose that Qi has only two terms, so that, with a 
proper assignment of the subscripts, it is of the form 

Qi = ayo^y^1 • • • y?r + by^1 • • • yXs, 

where a and b are constants, and the A's are positive integers. 
By Gourin's theory, the infinite system of sets of positive in­
tegers 

(5) 2̂0; hi, ' ' ' j hv) tzoy tzi, ' * • , tzv) * * • , 

where tki — k/dki, dk% being the greatest common divisor of Al­
and k, has the following properties. (1) For each k>l, the 
polynomial Qi(yatko

f • • • , yv
tkv) is reducible. (2) If <2i(0 = 

Qi(yotç>, 'y y»**) is reducible, there exists in (5) one and only 
one set, say t3-o, • • • , //„, such that each ti is an integral multiple 
of tji, say ti = 8itji, and the irreducible factors of Çi(<) are ob­
tained by replacing each yi by y^* in the irreducible factors of 
Qi(yotioy ' ' ' , y**'")* The system (5) is the only system of sets 
of integers having these two properties. 

If no one of the numbers /2o, /30, • • • is unity, there is no set 
of positive integral /'s for which Qi(yo, yiH, • • • , yv*

v) is reduci­
ble. Now suppose that tmio = tm2o= • • • = 1 , and that the re­
maining numbers of the set ho, ho, • • • are all different from 
unity. Then the system of sets 

\P) *mil) * * * j t"mxv) *m2l) > ^ j i » ; 

has the following properties. (1) For any set of (6) the poly­
nomial Qi(yo, 3>iW, • • • , y„W) is reducible. (2) If for any 
positive integral t's the polynomial Qi(yo, yih, • • , yv

tv) is re­
ducible, there exists in (6) one and only one set, say tmju ' • • » 
tmjVl such that each h is an integral multiple of /myt-, say U = ô»/myt-, 
and the irreducible factors of Qi(yo, 3V1, • * • , y»*v) are obtained 
by replacing yu • • • , yv by yih, • • • , yA, respectively, in the 
irreducible factors of Qi(yo, y\tm*x, • • • , yv

tmiv)> The system (6) 
is the only system of sets of positive integers having these two 
properties. 

The system (6) does not exist if X0 = l ; if X 0 >1 , the system 
exists, the integers Wi, m2, • • • being precisely the divisors of Xo 
that are greater than 1. If the system (6) exists, the number of 
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sets in it is finite. This is the outstanding novelty introduced by 
the presence of the exceptional variable yo. 

4. The Factorization Theorem. We are now ready to complete 
the solution of our problem. We begin by resolving Q into its 
irreducible factors. The irreducible factors which do not contain 
3/0 are treated as in Ritt 's theory. Those which contain at least 
three terms give rise to irreducible factors of f(x). Those which 
have only two terms give rise to a definite set of factors of the 
form bo+^2iLibi exp(/3;#), where the b's are constants, the /3's 
in each function have rational ratios to one another, and any 
two jo's in different functions have an irrational ratio. Rit t calls 
these factors simple functions. A simple function has an infinite 
set of factors. 

Consider an irreducible factor of Q, say Qi, which contains yo. 
We have seen that either there are no positive integral t's for 
which Qi(yoj 3>in, • • • , yv

tv) is reducible, or there exists one and 
only one finite aggregate of sets of positive integers 

tml, ' ' ' i tmv, (m = 1, ' • * , M), 

which have the following properties. (1) For each value of mf 

0i(yo, yitml, • • • , y>v) is reducible. (2) If Qi(^o, yi'1, • • • , y,tv) 
is reducible, there is one and only one value of m} say /x, such 
that each t% is an integral multiple of t^ say ti = 8itIXi, and the 
irreducible factors of Qi(yo, yih, • • • , yv

tv) are obtained by re­
placing yi, - - • , yv by yih, • • • , yv

ô», respectively, in the irre­
ducible factors of Qi(yo, yi**1, • • • , yv***)* 

If no set of fs exists such that Qi(3>o, ^î'1, • • • , yv
tv) is reduci­

ble, the function Qi(x, eplX,- - - , ep»x) is an irreducible factor of 

ƒ(*). 
If a set of /'s exists such that Qi(yo, yin, • • • , yv

tv) is reducible, 
we have a relation of the form (in the notation used above) 

Öi(yo, yitml, • • • , y>v) = I10i*(yo, yi, * • • , y0 , 

where the Q's in the second member are irreducible. Let the 
value of m be selected so that Km has its maximum value. Then 
each of the functions 

(7) Qik(x, e»*1***, • • • , eP»*!**»), (k = 1, • • • , Km), 

is irreducible. In fact if this were not so, there would exist a 
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set of positive integers 8i such that Qi(yo, yih, • • • , y***) would 
be resolvable into more than Km factors, which is not the case. 
Each of the functions (7) is a factor oîf(x). 

When we multiply together the simple functions coming from 
the irreducible binomial factors of Q which do not involve yo 
and the irreducible functions coming from the remaining irre­
ducible factors of Ç, we have a resolution of f(x) into factors 
belonging to the class C. I t is easily seen that this factorization 
is unique. Thus we have the following theorem. 

THEOREM. A function f(x) belonging to the class C can be ex-
pressed in one and only one way as a product 

ƒ ( » = Ii(x) • • • Im{x)Si(x) • • • Sn(x), 

where each factor belongs to C, the F s are irreducible functions, 
and the S's are simple functions, bo+^bj exp (fi%x), such that the 
ratio of any two (3's in different f unctions is irrational. 

BELL TELEPHONE LABORATORIES 

T H E N U M B E R OF TRISECANTS OF A SPACE CURVE 
OF O R D E R m WHICH M E E T AN i-FOLD SECANT* 

BY L. A. DYE 

The number of trisecants of a space curve Cm, of order w, 
which meet a general line was determined by Zeuthen,f but if 
the line happens to be an i-iold secant, i>2, it lies on the ruled 
surface of trisecants and the formula fails. In algebraic geom­
etry some extension of Zeuthen's work to cover this neglected 
case is often necessary, so by means of a correspondence we 
show that the number of trisecants of a Cm which meet an i-fold 
vsecant / is 

(m - 2)[> - m(m - l ) /6 ] - i(h - m + 2) + i(i - 1 ) ( i - 2)/6, 

where h is the number of apparent double points of Cm. 
In the plane determined by / and one of the h' =h — i{i—1)/2 

* Presented to the Society, October 27, 1934. 
t H. G. Zeuthen, Sur les singularités des courbes gauches, Annali di Mate-

matica, (2), vol. 3 (1869), pp. 175-217. 


