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IV. Any phrase-equation whose members have like initial letters 
is interderivable with a phrase-equation whose members are free of 
parentheses and have like initial letters. 

From the definition of the "terms" of a phrase, it is clear that 
if a phrase is free of parentheses all its terms are letters. Hence, 
by II , any phrase-equation E whose members are free of 
parentheses is interderivable with any phrase-equation resulting 
from permutation of non-initial letters within members of E. 
Therefore any phrase-equation whose members are free of 
parentheses and have like initial letters is interderivable with 
an equation of canonical form. It then follows, by III and IV, 
that every phrase-equation is reducible to canonical form. 

In view of §§3-4, this concludes the proof that upon elimina­
tion of abbreviations all homogeneous linear identities with ra­
tional coefficients are generable by (R) and (R') from (A) and 
(B). 
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A CHARACTERISTIC PROPERTY OF SURFACES OF 
NEGATIVE CURVATUREf 

BY E. F . BECKENBACH 

1. Introduction. Let there be given a piece of surface S in a 
representation 

(1) S: x = x(ui v), y = y(u, v), z = z(u, v)9 u
2 + v2 < p2

} 

with the following properties. 
(a) x(u, v)t y(u, v), z(u, v) have continuous partial derivatives 

of the third order. 
(b) The representation is isothermic; that is to say, E = G, 

F = 0, where 

E = xj + y ̂  + z£ ,F = xuxv + yuyv + zuzv,G = x2 + yv
2 + zv

2, 

the subscripts denoting differentiation. 
We put E = G=\(u, v). Then X(w, v) ^ 0 , and the representa­

tion is conformai except at points where \(u, v) =0 . The cus-

t Presented to the Society, April 7, 1934. 
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tomary assumption of differential geometry, that X(#, v)>0, is 
dropped because that assumption seems irrelevant to the pres­
ent results. 

Let the circle (« — UQ)2 + (V — v0)
2^r2 in u2+v2<p2 be denoted 

by (UQ, VO', r); and let the area and length of boundary of the 
image on 5 of (u0l v0; r) be denoted respectively by a(uo, v0; r) 
and l(u0, v0; r). On the above assumptions, the theorems ex­
pressed by the following formulas were proved first if S lies 
on a plane,f then if 5 is a minimal surface,$ and finally if S is 
a surface of non-positive Gaussian curvature i£:§ 

(2) a(u0, v0; r) ^ Tr2\(u0, v0), 

(3) l(u0, vo; r) è 2rr[\(u0) *>o)]1/2. 

Here it will be noted that X(^o, Vo) and [X(wo, Vo)]1/2 are respec­
tively the area magnification ratio and the length magnification 
ratio a t (u0, Vo)-

Any representation of a (u, v) -domain D on S will be called a 
typical map provided conditions (a) and (b) are satisfied for 
that representation. 

I t is our purpose to demonstrate the extent to which these 
formulas (2) and (3) are characteristic of surfaces of negative 
Gaussian curvature K, namely, we shall show that (see §3) there 
exist typical maps of (#, v) -domains D on surfaces of positive 
curvature for which the above inequalities are satisfied for all 
(#o, VQ', r) in D; but that (see §6) if either of these inequalities 
holds for all typical maps of («, v) -domains D on S and for all 
(wo, floî r) in D, then KSO on 5.|| 

The above will follow immediately from the simple lemma 
(see §§4, 5) : A necessary and sufficient condition that the Gaussian 
curvature K of a surface S, which admits of typical representations, 
be rg 0 wherever K is defined on S, is that for all typical maps of 
(u, v) -domains on S, the function \(u,v) be subharmonic. 

t L. Bieberbach, Zur Theorie una Praxis der konformen Abbildung, Palermo 
Rendiconti, vol. 38 (1914), pp. 98-112. 

$ E. F. Beckenbach, The area and boundary of minimal surfaces, Annals 
of Mathematics, vol. 33 (1932), pp. 658-664. 

§ E. F. Beckenbach and T. Radó, Subharmonic functions and surfaces of 
negative curvature, Transactions of this Society, vol. 35 (1933), pp. 662-674. 

|| That is, K^O wherever K is defined on 5, namely at all points for which 
x(»,tO>o. 
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2. Lemma. Let 5 be a surface given in a representation 

S: x — x(u, v), y = y(u, v), z = z(u, v), 

(u, v) in some domain D (not necessarily simply-connected), the 
coordinate functions having continuous first partial derivatives 
satisfying E = G=\(u, v), F = 0. If X(«, v) is subharmonic in D} 

then a(wo, v0; r)/{irr2) is a convex function of log r in any circu­
lar disc lying in D. Or if [X(#, fl)]1/2 *s subharmonic in D, thenf 
/(«o, *>oï r)/(2wr) is a convex function of log r in any circular 
annulus lying in D. 

This lemma merely expresses special cases of a fundamental 
property of the linear-mean and of the area-mean of subhar­
monic functions. { 

Thus 

Kuo,v0;r) 1 r 2 T 

= — I [\(u0 + r cos <£, fl0 + r sin <£)]1/2d<£ 
2 x ^ 0 2TTT 

is the linear-mean of [X(«, z>)]1/2, and 

a(uo,VQ; r) I f f X(«o + f, *>o + v)d£dri 

is the area-mean of X(«, «;). 
For any point (^o, v0) of D, we define, for r = 0, 

fa(«o, wo; r)"| ,. a(u0,v0;r) 
= hm = X(«o, vo), 

L irr2 Jr==0 r=o irr2 

R(«o, wo; f)"l .. l(uo,v0;r) 
= hm = |X(«o, w0)J

1/2. 
L 27rr Jr=o r=o 2 AT 

We have then the immediate corollaries, which hold as long as 
the circular disc («o, Vo\ r) remains in D : 

t See C. H. Dix, The length of closed level curves of a harmonic f unction, this 
Bulletin, vol. 39 (1933), pp. 24-25. 

X F . Riesz, Über subharmonische Funktionen und ihre Rolle in der Funk-
tionentheorie und in der Potentialtheorie, Acta Szeged, vol. 2 (1924-26), pp. 87-
100, and Sur les fonctions subharmoniques et leur rapport à la théorie du poten­
tiel, Acta Mathematica, vol. 48 (1926), pp. 329-343. For the generalization 
to the area-mean, see P. Montel, Sur les f onctions convexes etles f onctions sous-
harmoniques, Journal de Mathématiques, (9), vol. 7 (1928), pp. 29-60. 
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If X(«, v) is subharmonic in D, then 

(A.l) a(«0, *>o; r)/(irr2) 

is a non-decreasing function of r ; 

(A.2) a(u0, v0; r) ^ 7ir2X(w0, v0). 

If [\(u,v)]l/2 is subharmonic in D, then 

(B.l) l(uo,v0;r)/(2irr) 

is a non-decreasing f unction of r;f 

(B.2) l(u0, vQ; r) ^ 27rr[X(tt0, v0]
112. 

(A.l) and (B.l) follow from the fact that a function which is 
convex out to — co } and is bounded, necessarily is non-decreas­
ing. (A.2) and (B.2) are immediate corollaries of (A.l) and 
(B.l) , respectively. 

If in the above we replace the word "subharmonic" by "super-
harmonic," the lemma still holds, with "convex" replaced by 
"concave." And the four corollaries hold, with "non-decreasing" 
replaced by "non-increasing" and with the signs of inequality 
reversed. 

3. Example. The equations { 

2u 2v u2 + v2 - 1 
y = , z — 

U2 + V2 + 1 U2 + V2 + 1 U2 + V2 + 1 

give the familiar stereographic projection of the unit sphere 
(K=+l) with center (0, 0, 0) in the (x, y, s)-space on the 
(w, v)-plane, the u- and ?;-axes coinciding, respectively, with 
those of x and y. 

As is well known, this representation is isothermic; indeed, 
computations yield 

4 
E =G = \(u9 v) = ; F = 0. 

(u2 + v2 + l)2 

Further computations give the following expressions for the La-
placians AX =XWM+X™ and A(XX/2) s (\li2)uu + (X1'2),, : 

f A fortiori, then, l(u0, vQ; r) is a non-decreasing function of r; see E. F. 
Beckenbach and T. Radó, loc. cit. 

t See, for instance, L. R. Ford, Automorphic Functions , 1929, p. 120. 
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32 
AX = (2u2 + 2v2 - 1), 

O2 + v2 + l)4 

8 
A( \ i / 2 ) = (u2 + v2 - 1 ) . 

(^2 + V2 + l ) 3 

Since a necessary and sufficient condition that a function 
g(#, z>) which admits of continuous second derivatives be sub-
harmonic (superharmonic) is that Ag be ^ 0 ( S 0), t it follows 
that \(u, v) is subharmonic for u2-\-v2> 1/2 and superharmonic 
for u2+v2<l/2, and that [K(u, v)]lf2 is subharmonic for 
u2-\-v2>l and superharmonic for u2+v2<l. 

It follows (see §2) that (2) holds provided the circle (u0j VQ\ r) 
lies with its interior in u2+v2^l/2, but that the sign of in­
equality is reversed if the circle lies in u2+v2Sl/2. A similar 
statement holds for (3), according as the circle lies with its 
interior in u2+v2^l or in u2+v2Sl> 

Thus, whether or not \(u, v) for a small piece S* of the spheri­
cal surface is subharmonic, and whether or not (2) or (3) holds 
on 5*, depend not solely on the nature of the surface but also, 
in this example, on the choice of typical parameters. 

4. THEOREM 1. If K^O wherever K is defined on a surface S 
which admits of typical representations, then for any typical repre­
sentation of a (u, v)-domain on 5, the f unction X(w, v) is of class 
PL,% and therefore [X(w, v)]112 and \(u, v) are subharmonic. 

For surfaces in typical representation, E = G=X(w, v), F = 0, 
the Gaussian curvature K is given, at points where K is defined, 
by the expression :§ 

1 1 
(4) K = (\u

2 + \ 2 - XAX) = A log X. 
2X 2X 

t See F . Riesz, loc. cit. 
X A function p(u, v), denned in a domain D, is said to be of class PL in D 

provided p(u, v) is continuous and ^ 0 in D} and log p(u, v) is subharmonic in 
the part of D where p{u, z;)>0. See E. F . Beckenbach and T. Radó, Sub­
harmonic f unctions and minimal surfaces, Transactions of this Society, vol. 35 
(1933), pp. 648-661. 

§ See, for instance, E. F . Beckenbach and T. Radó, loc. cit.; the results of 
this section are taken from that source. 
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It is seen here that K^O is equivalent to A log X^O; conse­
quently, X(w, v) is of class PL, and therefore, a fortiori, 
[k(u, v)]112 and \(u, v) are subharmonic. Or directly, if it is de­
sired to show only that \\(u, v) ] 1 / 2 is subharmonic, we note first 
that at points (uo, vo) where X = 0, it follows from X 1 / 2 ^0, that 
X1/2 satisfies the sub-mean property 

1 r2T 

[\(u0, v0)]
lf2 S — I [\(u0 + r cos <£, v0 + r sin <t>)]ll2d<j>, 

2w J o 

and secondly that for other points, K ^ 0 and (4) imply 

Aft1'2) = JX-3/2[XAX - è(Xw
2 + X,2)] ^ 0; 

consequently, [k(u, v)]112 is subharmonic. A similar direct dis­
cussion might be given for \(u,v). 

It follows (see §2) that for any typical representation of a 
(u, z;)-domain D o n a surface 5 for which KSO wherever K is 
defined on S, the inequalities (2) and (3) hold for all (UQ, VQ\ r) 
mD. 

Conversely, (4) shows that if \{u, v) is of class PL for one 
typical representation on S, then K :§ 0 wherever K is defined 
on S\ consequently, X(w, v) is of class PL, and therefore sub­
harmonic, for all typical representations of (u, v) -domains on S. 

The example of §3 shows, on the other hand, that \(u, v) be­
ing subharmonic for one typical representation on a surface 5 
does not imply KSO on S. Nevertheless, we have the following 
result. 

5. THEOREM 2. If for all typical representations of (u, v)-do­
mains on the surface S given by (1), the area magnification ratio 
\{u, v) is a subharmonic function of u and v, then the Gaussian 
curvature K of Sis ^ 0 wherever K is defined on S. 

With S given in the representation (1), fix (uQ, *>o), any point 
in u2+v2<p2; we shall show, on the above assumption, that 
K^O a t the point on S corresponding to (u0, v0), provided K 
is defined there. Since u2Jrv2 <p 2 can be mapped conformally on 
itself, any interior point being carried to the origin, and since 
this mapping induces a new typical representation of u2+v2 <p 2 

on S, there is no loss of generality in assuming (u0, vo) = (0, 0). 
Again, since a rotation about the origin gives a conformai map 
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of the circle on itself, we may assume that the z/-axis is tangent, 
at (0, 0), to a contour line for the function \(u, v)y so that 

(5) X,(0, 0) - 0. 

Let an (a, jö)-domain D be mapped conformally on u2+v2 <p2 

by the analytic function 

(6) u + vo — f (a + iff). 

This mapping induces a typical representation of D on 5, for 
which the area magnification ratio is given by 

/*(«, 0) = xi + y*2 + z2 = X(«, v) | f (a + iff | 2. 

In (6) we substitute the particular function 

(7) u + iv = (a + ip)m - 2p, 

where w i s a real parameter different from zero. This function 
maps the angle | </>| < x / ( 2 | m\ ), where a+it3 = rei<f>, on the 
right-hand half-plane u> — 2p, and consequently maps some 
domain D in the angle conformally on the circle u2+v2<p2. Of 
course, D might not lie on a single-sheeted plane, for D might 
wind about the origin ; but D remains away from the origin and 
is free of branch-points. 

For the function (7), we have 

u = rm cos rn<j) — 2p, v = rm sin m<j>, 

n(a, 0) = X(«, v)m2r2m-2. 

A computation shows that the Laplacian 

Mr M00 
Afx = firr H 1 — 

r r2 

is given by 

( (m — 1 \ 2 (m — 1\ 
AM = mV2m~4< 4X1 J + 4\ur

m[ — J c o s m<j> 

(m - 1\ ) 
+ 4\vr

ml J sin m<j> + r2mA\ > . 

By assumption, AJU^O for all w ^ O and for all (a, ]8) in D, 
so that the quantity in brackets is ^ 0 for (u, v) in u2+v2<p2. 
In particular, at (u, v) = (0, 0), we have 0 = 0 and rm = 2p, so 
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that, writing k for (ra — l)/ra, we get at (u, v) = (0, 0) the quad­
ratic inequality in k 

X(0, 0)k2 + 2XW(0, 0)Pk + p2AX(0, 0 ) ^ 0 

for all yfe^l, and therefore for all k. Necessary conditions for 
this are that AX(0, 0 ) ^ 0 and that the discriminant of the quad­
ratic be S 0 : 

(8) |X*(0, 0)]2 - X(0, 0)AX(0, 0) S 0. 

It follows from (4), (5) and (8) that if X(0, 0) > 0 , so tha t i£ 
is defined at the point on 5 corresponding to (u, v) = (0, 0), 
then KS0 there. 

6. Conclusion. Inequalities (2) and (3), written as 

XOo, Vo) ^ I I X(w0 + £, Vo + v)dtdri, 

l r2r 

[X(^o, 2>o)]1/2 S — I [X(^o + r cos 0, v0 + r sin </>]1/2d<£, 
2T J o 

express defining properties* of subharmonic functions. Conse­
quently if, for a certain typical representation on a surface S 
of a (w, i>)-domain A (2) or (3) holds for all (u0, vo) r) in D, then 
for that representation X(w, v) or [X(w, v)]1/2, as the case might 
be, is subharmonic. In either case, X(w, v) is subharmonic for 
that representation, since [X(w, v)]1!2 being subharmonic im­
plies the same for X(w, v). 

By the result of §5, then, if either (2) or (3) holds for all 
typical representations on 6* of (u, v) -domains D and for all 
(wo, Vo; T) in D, so that \(u, v) is subharmonic for all typical 
representations, it follows that K^0 wherever K is defined on 
S. And conversely, as we have pointed out (see §4), if S is a 
surface given in typical representation, for which K^0 where-
ever K is defined on S, then (2) and (3) hold for all (&o, Vo', r) 
in the domain of definition. To this extent, then, the inequali­
ties (2) and (3) are characteristic of surfaces of negative curva­
ture. 

T H E R I C E INSTITUTE 

* See J. E. Littlewood, On the definition o f a subharmonic function, London 
Mathematical Society Journal, vol. 2 (1927), pp. 189-192. 


