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ON A CLASS OF EXISTENCE THEOREMS 
IN D I F F E R E N T I A L GEOMETRY 

BY T. Y. THOMAS AND JACK LEVINE 

1. Introduction. Many problems in differential geometry re­
quire the integration of a mixed system of differential equations 

du01 

(Ei) — : = \f/i(u, x), 
dxl 

(E2) Fo(u, x) = 0, 

which gives rise to an infinite sequence of sets of algebraic equa­
tions 

(1) Fx = 0,F2 = 0, • • • ,FN = 0, . . • , 

related to the system E by the following property. 
A necessary and sufficient condition for the existence of a solu­

tion of the system E is that there exist an integer N such that the 
first N sets of equations of the sequence (1) be algebraically con­
sistent and that all their solutions satisfy the (N+l)st set of equa­
tions of the sequence. 

In many cases the functions \[/ and F0 are linear and homo­
geneous in the unknowns u with the result that the equations 
(1) are of a similar character; also the coefficients A of the un­
knowns in (1) are the components of tensor differential in­
variants. In fact, the left members of each set of the equations 
(1) break up into the components of scalars and tensors. We 
shall confine our attention to systems E of this type. Since such 
systems E always possess a trivial solution u = Q, we shall mean 
by a solution u{x) of E a non-trivial solution of this system. 

A necessary and sufficient condition for the existence of a solu­
tion of the first N sets of equations of the sequence (1) is the 
vanishing of their resultant system RN(A). For equations of the 
type under consideration in which the coefficients are real 
quantities, the solution whose existence is implied by the vanish­
ing of the resultant system will be real.* 

* When the equations (1) are linear and homogeneous in the unknowns ua, 
the resultant system RN can be taken to consist of the totality of all determi­
nants of order L, equal to the number of unknowns ua

} which can be formed 
from the matrix of the coefficients of the first N sets of equations (1). 
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By the above hypothesis concerning the tensor character of 
the equations (1), we can think of the A's as the coefficients of 
a set of multilinear forms <£ in one or more sets of cogredient 
and contragredient variables. Let A—* A as a result of a trans­
formation of the variables of these forms. Then the vanishing 
of the resultants RN{A) implies the vanishing of the resultants 
RN{A) in the transformed coefficients Ay that is, the equations 
RN(A)=0 are a set of invariant equations in the sense of the 
algebraic invariant theory. Now, by Gram's theorem,* the in­
variant equations RN(A)=0 are equivalent to the identical 
vanishing of a set of covariants! of the forms <£. Hence the con­
ditions on the components A expressed by the equations 
RN(A)=0 are equivalent to the vanishing of a set of tensorj 
differential invariants T(A) with components which are poly­
nomials in the coefficients A. 

2. The Resultant System. Let L(*z2) denote the number of 
unknowns u in the system E, and let the symbol {FN} represent 
the first N sets of equations of the sequence (1). I t will now be 
shown that the vanishing of the resultant system RL is neces­
sary and sufficient for E to admit a solution. 

PROOF OF THE NECESSITY. If E has a solution, the set {FL} 
is satisfied by this solution, so that the resultant system RL 

vanishes. 

PROOF OF THE SUFFICIENCY. Suppose RL = 0. Then {FL} has 
a solution; in particular {Fi} will have a solution. When the 
equations F2 = 0 are added to the set {F\} two cases may arise : 

(a) all solutions of { Fi} satisfy {F2} ; 
(j3) the set { F2} is consistent but all solutions of { Fi} do not 

satisfy {F2\. 

If (a) occurs, then E admits a solution by the existence theo­
rem stated in §1. If (j8) occurs, we add the equations F3 = 0 to the 
set {F2} and consider cases analogous to the above, that is, cases 
(a) and (0) with { Fx} replaced by {F2} and { F2} by ( Fz}. Con­
tinuing in this manner, we must finally reach a set {F M } with 

* See, for example, R. Weitzenböck, Invariantentheorie, 1923, p . 160. 
f This is to be understood as including as a special case the vanishing of 

invariants of the forms <ï>. 
X This is considered to include the scalar differential invariants. 
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M<L such that all solutions of {FM} satisfy FM+i = 0. In fact, 
either a set { F M } where M <L — 1 is obtained such that all solu­
tions of {F M } satisfy FM+X = 0, or else we arrive at the set { FL-I }. 
But in this latter case there will be exactly L — l independent 
equations in { FL-\ }, so that the equations FL = 0 cannot add 
new independent equations to the set { FL-I }. Hence all solu­
tions of {JFI,_I} will satisfy FL — 0, and the sufficiency is estab­
lished. 

3. Fields of Parallel Vectors. In the problem of determining the 
conditions under which a general affinely connected space ad­
mits a field of parallel contravariant vectors we arrive at the 
sequence 

j i j i j i 

X Bjki = 0 ; X Bjki,m = 0 ; X Bjki,m,p = 0 ; • • • 

corresponding to (1), where B)M are the components of the 
curvature tensor B and B)u^m, BjkitfntPJ • • • are the components 
of the successive covariant derivatives of B. Here L = n. Hence 
we have the following theorem. 

THEOREM. There exists a set of integral rational tensor differ­
ential invariants P of a general affinely connected space such that 
the vanishing of the set P is necessary and sufficient for the exist­
ence of a field of parallel contravariant vectors. 

It is to be noted that the order in the derivatives of the com­
ponents of the affine connection of any invariant in P is Sn. 
Similar remarks apply to the existence of a field of parallel 
covariant vectors. 

4. First Integrals of the Paths of an Affinely Connected Space. 
Consider an affinely connected space with symmetric affine 
connection T, and let us seek to determine a symmetric covari­
ant tensor with components aa$...y possessing the property 
that its covariant derivative vanishes, that is, 

(2) aap...y>8 = 0 . 

These equations correspond to the differential equations Ei; in 
this case the set E2 does not appear. The number of unknowns 
aap... y in (2) is given by 
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_ (n+ k - 1)1 

(n- \)\k\ 

where k is the number of indices in the set aj3 • • • 7. 

T H E O R E M . There exists a set of integral rational tensor differ­
ential invariants Ik whose vanishing is necessary and sufficient for 
(2) to admit a solution. 

The vanishing of the invariants Ik is a sufficient condition for 
the existence of a first integral, 

dxa dx? dxy 

(3) aap.-.y • • • = const. , 
ds ds ds 

of the differential equations which define the paths of the af-
finely connected space. A necessary and sufficient condition for 
the existence of the first integral (3) is that 

(4) P(0ap...yt,) = 0, 

where P indicates the sum of the terms obtainable from the one 
in the parenthesis by a cyclic permutation of the indices 
Qjj8 • • • 70" . 

For linear first integrals we have the equations 

(5) aa,p + ap>a — 0 . 

Putting aatp = bap, we can deduce* as the system Ei: 

daa <r 
— = a^Tafi + bap, 

(6) dx? 
<T 

Daft,y = a<rl3ya$* 

We obtain immediately from (5) the system E2: 

(7) ba$ + fy« = 0. 

Corresponding to the equations (6) for the linear first integral, 
we have in the case of the quadratic first integral for the system 
E i : 

* O. Veblen and T. Y. Thomas, Transactions of this Society, vol. 25 (1923), 
p . 592; also L. P . Eisenhart, Non-Riernannian Geometry, p . 120. 
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gi jpq g a ]<& ipq gia-A jp q > 

ga^ijpqr I" ga(3y-£l ijpqr > 

where G and H are tensors ; and for the system E2 : 

Sij == &ji) êüp == 8iiP) êiJPQ == êi'ipq ~ êiJPQ) 

V?) êüpq I" gîpiq I gpijq = = £\giaA jpq - j - gja^piq ~T~ gpa^ijq) j 

gijp I g/pt' T~ gpi/ = = " • 

A system E for first integrals (3) of the &th degree can be 
obtained analogous to the above systems E for linear and quad­
ratic integrals. Hence we have the following result. 

THEOREM. There exists a set of integral rational tensor differ­
ential invariants I* of a space with symmetric affine connection 
such that the vanishing of the set Iff" is necessary and sufficient for 
the existence of a first integral of the kth degree. 

The number of unknowns L in the system (6) and (7) is equal 
to n2 + n. We can, however, eliminate the equations (7) from this 
system E by considering only the unknowns bap for which a>/3 . 
For the equations (6), as so modified, the number of unknowns L 
is equal to (n2+n)/2. Hence the maximum order of the differ­
ential invariants of a set T(A) as predicted by the integer L 
according to the discussion of §2 need not necessarily be at­
tained. 

5. Groups of Motions. A metric space Vn will admit a group 
of motions with contravariant components £a if, and only if, 
the equations of Killing are satisfied, that is, 

(10) ««.* + &,« = 0, 

where £« is the associated covariant form of the components £a. 
Since the equations (10) are of the same form as (5), it follows 
that the vanishing of the above set of differential invariants If 
for the space Vn is a necessary and sufficient condition for this 
space to admit a group of motions. 

Now consider the sequence (1) constructed from the equa­
tions (6) and (7) with reference to the space Vn. If there exists 
an integer M such that the ranks of the matrices of the sets 
{ FM} and { FM+I} are L — r, where L = n2+n denotes the number 

6 * J . V 

(8) gUp,q 

gijpq,r 



726 T. Y. THOMAS AND JACK LE VINE [October, 

of unknowns, then the Vn admits a group Gr of motions. Let 
{Dr} represent the equations obtained by equating to zero all 
determinants of order L — r + 1 in the matrix of the set {FL}. 
The equations {Dr\ imply the vanishing of the resultant sys­
tem RL and hence by the argument of §2 there exists an integer 
M such that all solutions of { F M } satisfy { FM+I }. But there 
must exist at least r independent solutions of {F M } in conse­
quence of the conditions {Dr}. Hence the conditions {Dr} are 
sufficient for the existence of a group of motions in r or more 
parameters. Evidently the conditions \Dr\ are necessary for 
the existence of such a group of motions. Moreover, the equa­
tions {Dr} form an invariant system ; this follows from the fact 
that {Dr} assures the existence of s^r independent solutions of 
{FL} and hence of the transformed equations {FL\, which im­
plies the existence of the corresponding equations {Dr}. Hence 
there exists a set of integral rational tensor differential invari­
ants Hr whose vanishing is equivalent to the conditions {Dr}. 

A group of motions of a Vn involves at most J=(n2+n)/2 
parameters; also when Vn admits a Gj of motions the space is 
of constant curvature.* Hence the above considerations show 
the existence of J sets of differential invariants H, namely 

(11) Hl9 # 2 , • • • , Hj, 

such that the vanishing of any set of these invariants implies 
the vanishing of all preceding sets. We can now state the follow­
ing theorem. 

THEOREM. The vanishing of the set of differential invariants Hr 

is a necessary and sufficient condition for a metric space Vn to ad­
mit a group of motions in R parameters, where r^R^J. Also a 
necessary and sufficient condition for the existence of a Gr of mo­
tions is the vanishing of the set Hr and non-vanishing of the set 
Hr+1-

It is known that there exists no Gj-i of motions of a Vn.\ This 
fact taken in connection with the above theorem shows that 
the vanishing of the set üZ>_i implies the vanishing of the set 
Hj. Moreover, the conditions imposed by equating the invari­
ants H j to zero must be equivalent to the conditions 

* See, for example, L. P. Eisenhart, Riemannian Geometry, 1926, p. 239. 
t L. P. Eisenhart, loc. cit., p. 246. 
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BafiyS = K(gaygp8 — gaôgpy), 

which characterize a space Vn of constant curvature K. 
Theorems analogous to the above can be stated concerning 

the existence of affine and projective colHneations in an affinely 
connected space. 

6. Metric Representation of an Affinely Connected Space. It was 
shown in §4 that a necessary and sufficient condition for the 
system 

dgafi a <r 
(12) — gafFccy - gaaTpy = 0 

dxy 

to admit a solution in the symmetric unknowns gap is the vanish­
ing of the set of invariants I2. If the system (12) admits a solu­
tion ga&(x) such that the determinant | gap\ does not vanish iden­
tically, the affinely connected space 5 is said to reduce to a 
metric space based on the quadratic differential form 

(13) <f> = gapdxadxP, 

or in other words to admit an w-dimensional metric representa­
tion. 

Now suppose that (12) possesses a solution gap such that the 
rank of the matrix \\gap\\ is r, where l^r<n. Without loss of 
generality it can then be assumed that \\gap\\ contains a non-
vanishing determinant of order r in its upper left hand corner. 
Then 

(14) gab = galbit, g^ = ga^l, 

(a, b—1, • • • , r\ a, (i = r + l, • • • , n). It has been shown that 
(13) can be reduced to the form 

r 

(15) Z hab(y)dy^dy'' 
a,b=l 

by a coordinate transformation x—>y if, and only if, the follow­
ing equations are satisfied :* 

* T . Y. Thomas, Proceedings of the National Academy of Sciences, vol. 
20 (1934), pp . 215-219. 
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a a a a 

dA a h dAp b dAa dAp 
(16) A p ->Aa + — = 0, 

dxb dxh d%P dxa 

(a, b = l, - • -,r ; a fi = r + l , • • • , n). On substituting for them's 
their values in terms of the gap as obtained from (14) and making 
use of (12), we find that the equations (16) are satisfied iden­
tically. Hence the transformation of (13) to the form (15) is 
possible. 

Under the above hypothesis that the rank of \\gapW is r<n, 
it is easily seen from (12) that 

(17) Ca
ah{y) = 0, 

(a = l, • • • , r; a = r + l, • • • , #; & = 1, • • • , w), where the C s 
are the components of the connection in the y coordinate sys­
tem. It likewise follows from (12) and (17) that 

(a, b = l, - • • , r; a = r + l, • • * , «), that is, the coefficients hab 
in (15) depend on the variables y1, • • • , yr alone. 

The correspondence 

/ , . . . , yr9 yr+l} . . . , yn _ * yl} . . . y yr 

defines an isomorphism between the space 5 and an r-dimen-
sional space 5*. Let the metric of 5 be defined by the form (13) 
and the metric of S* by the form (15). Then the distance be­
tween any two points P and Q in S measured along a curve C 
joining these points is equal to the distance between the corre­
sponding points P* and Q* measured along the corresponding 
curve C* in 5*. The space 5* will therefore be said to be an 
r-dimensional metric representation of the affine space S. 

THEOREM. A necessary and sufficient condition for the space S 
to admit an r-dimensionalmetric representation 5*, where l^r^n, 
is the vanishing of the set of differential invariants 1\. 
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