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NOTE ON RELATIONS CONNECTING CERTAIN 
CASES OF CONVERGENCE IN T H E MEAN* 

BY DUNHAM JACKSON 

1. Introduction. A lemma from which various inferences can 
be drawn with regard to the convergence of sequences of trigo­
nometric sums reads as follows, f 

LEMMA A. Iff(x) is a continuous f unction of period 2w, Tn(x) 
a trigonometric sum of the nth order, and 

Gna = I | / 0 ) — Tn(x)\'dx, 

and if there exists a trigonometric sum tn(x) of the nth order such 
that \f(x) —tn(x) | S €n everywhere, then 

\f(x) - Tn(x)\ ^ 4(nGnsyi* + 5en 

for all values of x. 

The exponent s may be any positive constant. In view of the 
continuity of f{x), it is possible to construct approximating 
sums tn{x) for successive values of n and to assign corresponding 
upper bounds en for the error of the approximation so that 
limn^ooen = 0. It follows as an immediate corollary of the lemma 
that if a sequence of sums Tn{x) has the property that 
\imn_>O0nGns = 0, for fixed s, then Tn(x) converges uniformly to­
ward f(x) as n becomes infinite. This may be regarded as con­
stituting a relationship between the convergence properties of 
two measures of the discrepancy between f{x) and the sum 
Tn(x), regarded as an approximation to ƒ(x) : the mean value 
Gn8/{2ir) of the sth power of the error, and the maximum value 
attained by the error at any single point. The latter will con­
verge to zero if the former approaches zero with sufficient rapidity. 
On the other hand, if the maximum error approaches zero, the 
mean will necessarily approach zero, without further restriction. 

* Presented to the Society, December 27, 1933. 
f See D. Jackson, Certain problems of closest approximation, this Bulletin 

vol. 39 (1933), pp. 889-908, Lemma 5. 



1934-1 CONVERGENCE IN THE MEAN 153 

The aim of this paper is to point out corresponding relations 
between the properties of convergence of the means correspond­
ing to two different exponents s and a. One side of the relation­
ship is an obvious consequence of Holder's inequality; the other 
is recognizable as a simple corollary of the lemma. As would 
naturally be expected, the result corresponding to the use of the 
maximum error as measure of the discrepancy is approached as 
a limit if a is allowed to become infinite. For the purpose in hand 
the lemma as first stated will be replaced by a slightly modified 
version, which is not effective for the proof of uniform conver­
gence but admits consideration of discontinuous functions in the 
treatment of convergence in the mean. It may be emphasized 
that except when expressly noted below no minimizing property 
need be ascribed to the sums Tn(x) ; they are not necessarily de­
termined by any criterion of closest approximation. 

To the discussion of trigonometric approximation there cor­
responds a parallel treatment of approximation by means of 
polynomials, which will, however, not be carried through in de­
tail. 

The principle is illustrated in exceedingly simple form by a 
problem which may be regarded as a special case of the pre­
ceding for f(x)=0, but is more directly of interest for its own 
sake. This special problem will be treated first. 

2. Integrals of Powers of Trigonometric Sums and Polynomials. 
If 4>{x) is a non-negative function over an interval (a, b), and if 
the value of the integral 

Hs = f [$(x)]°dx 
J a 

is known, an upper bound for the magnitude of the integral H7 

with a value of cr<s is given by Holder's inequality. For a>s 
no such upper bound is in general available. For special classes 
of functions <fi(x), however, a relation of inequality giving an 
upper bound is obtainable in this case also. 

Let Tn(x) be a trigonometric sum of the nth order, and let 

| Tn(x)\'dx, 
— 7T 

with an arbitrary positive exponent s. For a<s, by Holder's 
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inequality, IIn ^(27r)l~^ls)(IIns)^
/sK The following lemma, the 

proof of which* (like that of Lemma A) depends on Bernstein's 
theorem on the derivative of a trigonometric sum, leads at once 
to the desired inequality in the contrary case. 

LEMMA B. If Tn(x) is a trigonometric sum of the nth order, if 

Hns = I | Tn(x)\*dx, 

and ifXn is the maximum of \Tn(x) |, then /xn^2(nHns)
1J8. 

If a>s, application of this lemma gives 

lino = ƒ Tn(x)\—\Tn(x)\9dx 

^ [2{nHnsy^Y~8Hns = 2'-»<''->-1(ff».)' /a. 

The result involves the order of the trigonometric sum through 
the factor n((r/s)~l. The inequality can be written in the more 
symmetrical form 

(nHM)u* g 2l-(°^(nHnsyi°. 

Similarly, if Pn(x) is a polynomial of the nth degree, and 

J a 
then 

Hnff ^ (b - ay-^'KHnsY1' 

for a<s, by Holder's inequality, and 

for a>s, in consequence of a proposition f analogous to Lemma 
B, the constant C having the value {2[4/(6-a)] 1 / f}^- ' ) / f l r . 

3. Convergence of Trigonometric Approximation. Let f{x) be a 
given function of period 2w which is bounded and integrable (in 
the sense of Riemann or in the sense of Lebesgue), and let Tn(x) 
be a trigonometric sum of the nth order. Let 

* See this Bulletin, loc. cit., Lemma 1. 
f See this Bulletin, loc. cit., Lemma 2. 
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G™ = I \f(x) — Tn{x)\9dx 

with any value of s>0. If a<s, application of Holder's inequal­
ity gives 

Gna s (27ry-^*\Gnsy°. 

It follows that if a sequence of sums Tn(x) is given so that 
limn^ooGns = 0 for a fixed value of s, then limn^0OGn(r = 0 for any 
fixed a<s. 

For treatment of the case cr>s the following modification of 
Lemma A will be established. 

LEMMA C. If f(x) is a bounded and integrable function of pe­
riod 2w having M as an upper bound f or its absolute value, Tn(x) 
a trigonometric sum of the nth order, and 

Gns = I | ƒ (a) — Tn(x)\*dx, 

then 

\f(x) - Tn{x)\ ^ 4(nGnsyt* + 5M 

for all values of x. 

Let Mn be the maximum of \Tn(x) |, attained for X — XQ. By 
Bernstein's theorem, \T£ (X) \ ^nfin everywhere. For |x — x01 
^ 1 / ( 2 » ) , \Tn(x0)-Tn(x) |^Mn/2, and \Tn(x) \^fxn/2. If 
Mnè 4M, so that | ƒ 0 ) | ^ M n / 4 , t h e n | / ( x ) - r n ( x ) | ^/xn/4 through­
out the specified range of values for x. The length of the inter­
val being 1/n, 

*7®"' 
so that Vn^£(nGns)

l/\ If /zn<4ikf, this inequality in itself serves 
to give an upper bound for fxn. In any case jun can not exceed the 
sum of the two alternative upper bounds : 

Combination of this relation with the fact that \f(x) | ^ M gives 
the conclusion of the lemma. 

If <T>S, it is seen by application of the lemma that 
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G», ^ [4(fiGn.)1/' + SM] M G n . . 
Hence 

(Gn,) 1 /^) ^ [4(nGnsy* + 5M](Gnsy^ 

= 4 [ ^ - ( ^ G j * ^ (*-«)] + SAfCGn.)1/^^. 

If the given sums Tn(x) are such that nx~^sl<j)Gns approaches 
zero, Gns by itself will approach zero a fortiori, the whole right-
hand member will converge toward zero, and the same will be 
true of Gna. For convergence of Gn<r toward zero as n becomes in­
finite, when a>s, it is sufficient that 

lim n^'^Gn, = 0. 
n—>oo 

Although it has not been required in the preceding general 
argument that the sums Tn(x) possess any minimizing property, 
the reasoning applies in particular if Tn(x) is characterized 
among all trigonometric sums of the nth order as one for which 
Gns has the smallest possible value. 

For example, if Tn(x) is the partial sum of the Fourier series 
iorf(x) through the terms in cos nx and sin nx, and if f(x) is of 
limited variation, limn^Gw = 0 for every positive value of cr. 
For 

oo 

Gn2 = 7T J2 (<**? + W)> 

where au and bjc are the Fourier coefficients of f(x) ; these coeffi­
cients have an upper bound of the order of 1/k] and G„2 conse­
quently has an upper bound of the order of 1/w. The same 
conclusion with regard to the convergence of Gn<r can also be 
reached in other ways. 

As another illustration, let it be supposed that ƒ(x) is con­
tinuous, and that a trigonometric sum tn(x) of the nth order 
exists so that \f(x) —•/„(#) | ^ e n for all values of x. If Tn(x) is a 
sum which minimizes Gn8, then by virtue of this minimizing 
property 

| ƒ 0 ) - Tn(x)\*dx g I |f(x) - tn(x)\8dx ^ 2<n-en°. 

A sufficient condition for the convergence of Gn(J toward zero as 
n becomes infinite, when s and a are held fast and the sums 
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Tn(x) are chosen each time to minimize Gns, is that sums tn(x) 
exist for the successive values of n so that 

lim nl-^/(T)en
8 = 0, lim «<1/-)-(1/<r)€„ = 0. 

»—» oo M—> oo 

This condition will be fulfilled,* when (1/s) — (1/cr) < 1, if ƒ(#) 
has a modulus of continuity co(ô) such that 

lim u(b)/bM*-ilM = 0. 

The case of Fourier series is included for s = 2. This special 
case, however, can be treated more advantageously by a differ­
ent method. If Tn(x) is the partial sum of the Fourier series, and 
if a trigonometric sum tn(x) of the nth order exists with en as an 
upper bound for the difference \f(x)— tn(x) |, then f 

\f(x) - Tn{x)\ = Benlogn 

for all values of x, where B is an absolute constant. By the least-
square property of the Fourier series, 

Gn2 ^ f [ƒ(*) - tn(x)]*dx ^ 2 W , 

and for a > 2 

Gna = (Ben log ny-*Gn2 = 2irB°-*(log nY~hn% 

so that Gna will approach zero if l im^^ (log n)l~(2/<r) en = 0, and 
hence if 

lim (log ô)l-w*>œ(ô) = 0, 
Ô-+0 

where co(8) is the modulus of continuity of f(x). 
For general s and for (1/s) — (1/cr) =• 1, sufficient conditions 

for convergence can be formulated in terms of the existence and 
properties of continuity of one or more derivativesj of f(x). 

* See for example the writer's Theory of Approximation, Colloquium Publi­
cations of this Society, vol. 11, 1930, p. 7, Theorem 2. 

t See for example the Colloquium cited in the preceding footnote, p. 21, 
Theorem 9; H. Lebesgue, Sur la représentation trigonomêtrique approchée des 
fonctions satisfaisant à une condition de Lipschitz, Bulletin de la Société Mathé­
matique de France, vol. 38 (1910), pp. 184-210; pp. 196-197, 201. 

î See Colloquium, p. 12, Theorem 4. 
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Conditions for the convergence of Gna in terms of the order 
of magnitude of en can be stated without change of form if Tn(x), 
instead of minimizing Gns, is chosen so as to reduce the integral 

ƒ P0) | / 0 ) - Tu(x)\9dx 

to a minimum, where p(x) is a summable function having a posi­
tive lower bound. Similar statements, with a modification of the 
exponent of the power of n, can be made in certain cases when 
the greatest lower bound of p(x) is zero.* 

These conclusions relating specifically to sums Tn(x) which 
possess a minimizing property are almost immediate conse­
quences of results previously published as to the order of magni­
tude of f(x) — Tn(x)i and have the force of corollaries, pointing 
out implications already present in those results. 

4. Lemma for the Case of Polynomial Approximation. Explicit 
treatment of polynomial approximation will be confined here to 
the formulation of an analog of Lemma C. 

LEMMA D. If f{x) is a bounded and integrable f unction over the 
interval {a, b), with M as an upper bound for its absolute value, if 
Pn(x) is a polynomial of the nth degree, and if 

Gns = I I/O) — Pn(x)\ °dx, 
J a 

then 

| /(*) - Pn(x)\ S 4f — — j + SM 

for a^x^b. 
The proof is similar to that of Lemma C, with use of MarkofTs 

theorem in place of that of Bernstein. 

T H E UNIVERSITY OF MINNESOTA 

* See this Bulletin, loc. cit., Theorems 9 and 10. 


