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ON CUBIC CONGRUENCES* 

BY H. R. BRAHANA 

1. Introduction. In the consideration of metabelian groups G 
of order pn+z which contain a given abelian group H of order 
pn and type 1, 1, • • • , there enters an irreducible cubic con­
gruence 

(1) xz + yx2 — ax + j8 s 0, (mod p). 

I t is necessary to determine how many congruences (1) are 
distinct under certain transformations on the generators of G.f 

Let the generators of H be Si, s2, • • • , sn, and let £A, U2y Uz 
be three operators of order p from the group of isomorphisms 
of H. Let the operators s\y • • • , Uz be permutable except for 
the relations 

UrlsiUi = stfs, U2~
1s1U2 = stfs, Uz'^iUz = Sisfsfsf, 

Urls2ux = s2Si, u2~
1s2u2 = s2ss, Uz~ls2uz = s2s&. 

Such operators Uu U2, Uz obviously exist. The condition that 
{ Ui, U2, Uz} contain no operator permutable with any opera­
tor, except identity, of {si, s2} is readily seen to be that (1) be 
irreducible, (mod p). 

The group G = {H, UI, U2, UZ} is a subgroup of the holo-
morph of H. For the sake of simplicity in the subsequent com­
putations we shall show that generators of G may be chosen so 
that 7 = 0, provided p>3. Let s{ =SiS2~\ Ui = UîxU2i and Ui 
= UiÜ22Uz. The operators s{, s2, • • , sn, Uu Ui, Ui generate 
G, and satisfy (2) with new numbers a', j8', y', where 

a! — 27 + a — 3, 

j 8 ' - a + 0 + 7 - l , 

y' = 7 — 3. 

Hence by repeating this transformation we may reduce 7 to 

* Presented to the Society, October 28, 1933. 
t See my paper, On the metabelian groups which contain a given group H as 

a maximal invariant abelian subgroup. This paper has been offered to the Ameri­
can Journal of Mathematics. 
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zero provided p^3. We may therefore assume that y in (2) is 
zero. The congruence (1) then becomes 

(3) xz - ax + p s 0, (mod p). 

There are many pairs a, /3 such that (3) is irreducible and each 
such pair determines a group of the type in question. I t is 
necessary to determine how many of these groups are distinct. 
We shall show that there is just one such group by proving the 
following theorem. 

THEOREM 1. In any given group whose generators satisfy (2) 
with 7 = 0 and no relations which are not consequences of (2), 
generators may be chosen to satisfy (2) with y' = 0 and a' and 0' 
the coefficients of an arbitrary irreducible cubic of the form (3). 

We consider the following choice of generators of G, not the 
most general on account of the complexity of the required com­
putations. We take 

f 6 c 
^2 — Sl<?2, 

u,'- uîuluî, v{ = u\lu\luT. 
We require a, • • • , mx to be such that the new generators 
satisfy (2), with 7 = 0. The transformation misses complete 
generality only because of Ui. The requirement that the com­
mutator of Ui and si be the same as that of U( and si gives 

bk + cl + abm = 1, 

ck + fibni = a, 

bl + cm s 0, (mod p). 

Solving this system for k> I, and m, we have 

k= [ap + 0b\c-ab)]/(cp), 

(5) l = c(c — ab)/p, 

m = — b{c — ab)/p, 

where p=c3—ab2c+/3è3, which cannot be zero because (3) is 
irreducible. The operator Ui = UikU2lUzm is not a power of Ui 
because si and si are independent, which makes c — ab different 
from zero. We may now compute the exponents of s6

f = s 3 W , 
the commutator of Ui and si. They are 

(4) 
^1 — $1^2, 

U{ = Vu 
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r = {ap + (c - ab)\pb* + ac2 - abc]}/(cp), 

s = [a2p - pb(c - ab)2]/(cp), 

t = (c - abY/p. 

Computing the commutator of U( and si and requiring it to be 
si, we get the system 

bki + cl\ + abmi = r, 

ck\ + fibnii = s, 

bh + cwi = /, (mod p). 

We avoid the solution of this system by taking account of the 
fact that if the commutator of U{ and s{ is expressible in terms 
of the commutators of U{ and s( and si, as it must be if the 
resulting cubic takes the form (3), it must be independent of 
5B, and hence 

h + ami = 0, (mod p). 

Using this congruence with the last two of the system above, 
we get 

h = [a2p - pb(c - ab)(2c - ab)]/(c2p), 

(6) h = — a(c — ab)/p, 

rm = (c — ab)/p. 

The first congruence of the system above then takes the form of 
a condition on a, b} and c. It becomes 

(7) Sac2 - aab2 + 3pb2 - labc == 0, (mod p). 

Hence if a, &, and c are chosen to satisfy (7), fe, /, and m are de­
termined by (5) and ku h, and mi by (6) so that the new gen­
erators of G satisfy (2) and the corresponding cubic, which must 
still be irreducible, is in the form (3). The condition that U{, 
Ui, and Us be independent is that the determinant of the ex­
ponents of £A, U2, and Us in the expressions for them be not 
zero. This determinant is (c — ab)z/p2 and the condition is satis­
fied. 

If we denote the transformed cubic by 

(8) xz - a'% + P' = 0, 
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and examine the exponents of s3 and s4 in the commutator of 
Uz and s{, we obtain the following congruences : 

ki + ah + anti = a! + &/3', 

#&i + jÖWi = aa' + cfi', 

which we may solve for a ' and j8'. The result is 

a' = (2a6 - 3pb + ac - 3a*c)/p, 
( 9 ) /3' = ( a 3 - c * a + /3)/p. 

We next take the irreducible congruence (3) and consider the 
effect of a linear fractional transformation on the variable x. 
Let this transformation be 

(10) * ' = ( - * + a)/(bx - c). 

If the coefficients a, b, and c are residues (mod p) and if they 
satisfy (7), the transformation changes (3) into 

x'3 - o V + jS' s 0, 

where j8' and a ' are given by (9). In fact the condition (7) is 
the condition that the coefficient of x'2 in the transformed con­
gruence be zero. Hence the transformation (10) on the variable 
x is the same as the transformation (4) on the generators of G. 
We may then study all transformations (4) by studying trans­
formations (10). 

Now the irreducible congruence (3) defines a Galois field 
GF(pz) in which the congruence has three roots. Any other 
irreducible cubic congruence, for example (8), defines a GF(pz) 
simply isomorphic with the first. The congruence (8) is therefore 
reducible in the GF{pz) defined by (3). If X is one of the roots 
of (8), then the three roots are* 

X, Z ^ a n d X ^ . 

Any mark X in the GF(p*) may be written 

(11) yx2 + ôx + €, 

where x is a root of (3) and y, ô, and e are rational, that is, in the 
GF(p), Then in order to prove our theorem we need only to show 
that rational numbers a, ô, and c can be found such that (10) 

* Dickson, Linear Groups, p. 20. 
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transforms a root of (3) into (11). Setting (11) equal to the 
right-hand side of (10), we obtain 

a = (/V + 8e)/(ay* - 52 + ye), 

(12) b = y/(ay2 ~ $2 + ye), 
c = <5/(a72 _ ô2 + 7 e ) # 

This shows that (4) may be chosen so that (3) is transformed 
into (8), where a ' and /3' are any numbers such that (8) is irre­
ducible, and hence completes the proof of Theorem 1. 

2. A Special Transformation. Much interesting information 
about irreducible cubics is obtained by considering special trans­
formations of the form (4). Let s{ =sx\ U2'=U2

k, Ui = U/.* 
This leaves G invariant and the transform of the congruence (3) 
corresponding to the generators s{ , s2, Z7i, U2, VI is 

(13) x3 - «*** +j8*8 s 0. 

By means of this transformation we are able to classify all cubic 
congruences of the form (3) in three types : those for which (a) 
a = 0; (b) ce = 1 ; and (c) ce is a particular number not a square, 
(mod p). 

Let us consider the possibility of transforming (3) into an 
irreducible congruence of the same form except that ce = 0. By 
means of (7) we may change the value of ce' in (9) to 

(14) a' = (c - ab) [a(c + ab) - 3$b]/(cp). 

Hence if a is to be zero, then a, &, and c must be chosen so that 

[a(c + ab) - 305] = 0. 

Using this with (7) to eliminate b we obtain 

c(3aa2 - 9pa + ce2) = 0. 

If c = 0 and (7) is satisfied, we must have a = 3j8/ce and excepting 
the case where ce = 2 these values require b to be zero if ce' is to 
be zero. Therefore, in general, we must have 

3aa2 - 9pa + a2 s 0. 

Since a must be rational it follows that 

* This is a special case of a transformation which only appears to be more 
general than (4). 
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(15) 81/32 - 12a3 

is a square. Conversely if (15) is a square, a, &, and c may be 
found such that a1 is zero, in which case the irreducible con­
gruence takes the form 

(16) x3 + /3/ = 0. 

Irreducible congruences of the form (16) exist when p is of 
the form 6& + 1 and do not exist when p is of the form 6& — 1 . 
The irreducibility of the congruence (3) says that the group 
{sly ^2} contains no operator permutable with any operator of 
{ Uu U2, Uz}, a property independent of the choice of generators 
of the two groups. Hence the irreducibility of (3) implies the ir­
reducibility of (16). Therefore (15) is a square when p is of the 
form 6k + 1 and is not a square when p is of the form 6k — 1. The 
quantity (15) is the product of —3 and the discriminant of (3). 
Now — 3 is or is not a square according as p is of the form 6& + 1 
or 6k — 1, and consequently the discriminant of an irreducible 
cubic is always a square.* 

3. Method of Writing all Irreducible Cubics of the Form (3). 
The following considerations give an easy method of writing 
all the irreducible cubics of the form (3) when p is of the form 
6& + 1. Start with any irreducible cubic in the form (16). Since 
a = 0, the transformation (4) will have its coefficients subjected 
to (7) changed to 

ac2 + $b2 s 0. 

The» first relation of (9), or (14), becomes 

a! = 3ac(c — ab)/(bp). 

Setting a' = l and combining these two relations to eliminate 
j8, we have 

c(c — ab)(3a — be) = 0. 

Therefore if a' = 1, we have 3a = be and we may solve for a and 
b in terms of c. This gives 

(17) a= - * 7 ( 9 0 ) , * = -*V(3/3) . 

The determinant c — ab could be zero only if c(27fi2 — c6) were 
zero which is impossible since j8 is not a cube. Hence c may be 

* See Dickson, Criteria for the irreducibility of functions in a finite field, 
this Bulletin, vol. 13 (1906-7), p. 1. 
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chosen at random (different from zero) and a and b may then be 
determined so that a' = 1. The value of /3' is then 

(18) p' = (a3 + 0)/p = (27/3* + c6)/(27/3c3). 

The condition that two values of /3' given by (18) for two num­
bers c and c' be the same is 

270V3 ~ à) = c'*c\<f* - c3). 

Again recalling that j8 is not a cube, we see that this requires 
that c3 = c'3. Therefore, by taking (p—l)/3 numbers c whose 
cubes are distinct, we obtain (£—1)/3 distinct numbers ]8', 
each of which determines an irreducible cubic of the form 
xz — x+ /3 ' = 0. By means of this transformation and the one 
which changes (3) into (13), we may obtain all the irreducible 
cubics (3) for which a is a square from any irreducible cubic of 
the form (16). 

If we let a' be k, instead of 1 as above, and carry through a 
computation similar to the above, we obtain 

(19) 0' = (2702 + âkz)/(2l$cz). 

Hence we have the following theorem. 
THEOREM 2. The irreducible cubics of the form (3), when p is 

of the form 6& + 1, are 

x* - ax + (2702 + c6a3)/(270<;3) SES 0, 

where x3+j8 = 0 is any irreducible binomial cubic and c and a are 
any numbers from 1 to p—1. 

This theorem gives a straightforward method of writing 
without duplications all the irreducible cubics of the form (3) 
when p is of the form 6& + 1 and a non-cube j8 is known. In the 
case of p of the form 6& — 1 we have not been able to obtain a 
like result. There is, however, one interesting formula which we 
shall give. 

We have given an arbitrary irreducible cubic (3) and we 
apply the transformation (4) whose exponents are subject to 
the condition (7). Since a, b, and c are rational, (7) imposes a 
restriction on a. Also, (7) determines the ratio of c and b in 
terms of a. If we let a = 3j8/a, we find 
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Since the discriminant of the cubic is a square, b can be chosen 
so that af = 1. The corresponding value of /3' is 

- 729/34 

azb*(4a* - 27/32) 

The ratio of /3' to a ' is -9/32/(azb). If we take a in (3) to be 1 
and determine b in (20) so that a ' is 1, we have 

0' = - 0(4 - 2i^yi\ 

We have therefore the following theorem. 
THEOREM 3. ƒƒ £ is of the form 6k — 1 and #3 — #+/3 = 0 w 

irreducible, then xz — x+/3(4 — 27/32)1/2 = 0 is a/stf irreducible. 
If ]8 in the above theorem is not 1/3, the second cubic is dis­

tinct from the first. By repeated applications of the theorem we 
obtain a set of cubics of the form #3 — #+/3 = 0, but in general 
we do not obtain all of them. 

THE UNIVERSITY OF ILLINOIS 

T H E ALGEBRA OF SELF-ADJOINT 
BOUNDARY-VALUE PROBLEMS* 

BY V. V. LATSHAW 

1. Introduction. By algebraic processes, D.Jackson f obtained 
in matrix form the condition for self-adjointness of differential 
systems of any order. The purpose of this paper is to develop by 
means of the matrix criterion the explicit conditions for self-
adjointness of the boundary conditions associated with self-
adjoint and anti-self-ad joint differential equations. 

2. Even-Order Systems. Let L(u) denote the self-adjoint dif­
ferential expression J 

(1) L(U) S3 (*««<«>)(*> + (Pm-lU^-»y™-» + ' • • + PoU, 

where m is any positive integer, pi(x) is of class C\ and pm(x) 9^0 
in the interval (a^x^b). Along with 

* Presented to the Society, October 31, 1931. 
t D. Jackson, Transactions of this Society, vol. 17 (1916), pp. 418-424. 
Î Bounitzky, Journal de Mathématiques, (6), vol. 5 (1909), p. 107. 


